如果需要使用jupyter notebook,直接看第3点
1.新创虚拟环境并激活
conda create -n xxx python=版本号
conda activate xxx //xxx为环境名
2.
(1)CPU版
Pytorch:
conda install pytorch torchvision torchaudio cpuonly -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
TensorFlow:
pip install tensorflow==xxx -i https://pypi.tuna.tsinghua.edu.cn/simple
(2)GPU版
Pytorch:
升级显卡驱动,用nvidia-smi指令查看cuda版本,保证此版本大于等于安装的Pytorch的cuda版本,其他安装指令可去pytorch官网查看
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
TensorFlow:
安装tensorflow-gpu=2.2.0
pip install tensorflow-gpu==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install cudatoolkit=10.1
conda install cudnn=7.6.5
安装tensorflow-gpu=2.4.0,使用python版本为3.7或者3.8
conda install cudatoolkit=11.0
两种装cudnn的方式
①搜索conda-forge通道下的cudnn版本,找到合适版本进行安装
conda search cudnn -c conda-forge
conda install cudnn==8.0.5.39 -c conda-forge
② cuDNN Archive | NVIDIA Developer ----cudnn下载链接,选择适合版本下载。
下载后解压如图所示
找到自己创建的anoconda虚拟环境所在位置,复制文件夹中的文件进去
tensorflow对应python,cuda,cudnn版本:
tensorflow对应keras版本:
pip install keras==2.3.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
3.安装jupyter notebook
jupyter notebook:下载anaconda —— 创建激活虚拟环境 —— 在虚拟环境中创建 jupyter notebook 内核包 —— 创建内核 —— 再在虚拟环境中安装pytorch或tensorflow(注意:创建内核和安装pytorch或tensorflow的顺序不能换
,否则即使jupyer notebook有了这个虚拟环境,import torch依然会显示不存在)
(1)先创建好虚拟环境并激活
conda create -n xxx python=版本号
conda activate xxx //xxx为环境名
(2)在虚拟环境中创建 jupyter notebook 内核包ipykernel
conda install -n xxx ipykernel //xxx为环境名
(3)在虚拟环境中创建新的内核
python -m ipykernel install --user --name pytorch --display-name "pytorch"
一般虚拟环境名字和内核名字相同
(4)最后按第2点安装cpu或gpu版的pytorch或tensorflow
4.(可选)安装常用包
pip install numpy pandas matplotlib scikit_learn jupyter -i https://pypi.douban.com/simple/
5.关联Jupyter Notebook和conda的环境和包
conda install nb_conda