文本预处理:词袋模型(bag of words,BOW)、TF-IDF

*** 这篇博客主要整理介绍文本预处理中的词袋模型(bag of words,BOW)和TF-IDF。 ***

一、词袋模型(bag of words,BOW)

词袋模型能够把一个句子转化为向量表示,是比较简单直白的一种方法,它不考虑句子中单词的顺序,只考虑词表(vocabulary)中单词在这个句子中的出现次数。下面直接来看一个例子吧(例子直接用wiki上的例子):

"John likes to watch movies, Mary likes movies too" 

"John also likes to watch football games"

对于这两个句子,我们要用词袋模型把它转化为向量表示,这两个句子形成的词表(不去停用词)为:

[‘also’, ‘football’, ‘games’, ‘john’, ‘likes’, ‘mary’, ‘movies’, ‘to’, ‘too’, ‘watch’]

因此,它们的向量表示为:
在这里插入图片描述

scikit-learn中的CountVectorizer()函数实现了BOW模型,下面来看看用法:

from sklearn.feature_extraction.text import CountVectorizer
corpus = [
    "John likes to watch movies, Mary likes movies too",
    "John also likes to watch football games",
]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
print(X.toarray())

#输出结果:
#['also', 'football', 'games', 'john', 'likes', 'mary', 'movies', 'to', 'too', 'watch']
#[[0 0 0 1 2 1 2 1 1 1]
# [1 1 1 1 1 0 0 1 0 1]]

二、TF-IDF(Term Frequency / Inverse Document Frequency,词频-逆文本频率)

BOW模型有很多缺点,首先它没有考虑单词之间的顺序,其次它无法反应出一个句子的关键词,比如下面这个句子:

"John likes to play football, Mary likes too"

这个句子若用BOW模型,它的词表为:[‘football’, ‘john’, ‘likes’, ‘mary’, ‘play’, ‘to’, ‘too’],则词向量表示为:[1 1 2 1 1 1 1]。若根据BOW模型提取这个句子的关键词,则为 “like”,但是显然这个句子的关键词应该为 “football”。而TF-IDF则可以解决这个问题。TF-IDF看名字也知道包括两部分TF和IDF,TF(Term Frequency,词频)的公式为:
在这里插入图片描述
TF-IDF值越大说明这个词越重要,也可以说这个词是关键词。关于关键词的判断示例,可以参考TF-IDF与余弦相似性的应用(一):自动提取关键词

下面来看看实际使用,sklearn中封装TF-IDF方法,并且也提供了示例:

from sklearn.feature_extraction.text import TfidfVectorizer
corpus = [
    'This is the first document.',
    'This document is the second document.',
    'And this is the third one.',
    'Is this the first document?',
]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())

print(X)
print(X.toarray())

"""
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
  (0, 8)	0.38408524091481483
  (0, 3)	0.38408524091481483
  (0, 6)	0.38408524091481483
  (0, 2)	0.5802858236844359
  (0, 1)	0.46979138557992045
  (1, 8)	0.281088674033753
  (1, 3)	0.281088674033753
  (1, 6)	0.281088674033753
  (1, 1)	0.6876235979836938
  (1, 5)	0.5386476208856763
  (2, 8)	0.267103787642168
  (2, 3)	0.267103787642168
  (2, 6)	0.267103787642168
  (2, 0)	0.511848512707169
  (2, 7)	0.511848512707169
  (2, 4)	0.511848512707169
  (3, 8)	0.38408524091481483
  (3, 3)	0.38408524091481483
  (3, 6)	0.38408524091481483
  (3, 2)	0.5802858236844359
  (3, 1)	0.46979138557992045
[[0.         0.46979139 0.58028582 0.38408524 0.         0.
  0.38408524 0.         0.38408524]
 [0.         0.6876236  0.         0.28108867 0.         0.53864762
  0.28108867 0.         0.28108867]
 [0.51184851 0.         0.         0.26710379 0.51184851 0.
  0.26710379 0.51184851 0.26710379]
 [0.         0.46979139 0.58028582 0.38408524 0.         0.
  0.38408524 0.         0.38408524]]
"""

​
本demo实现的是基于bow原理对图片进行分类,并实现对选取得测试集进行查找 BoW(Bag of Words)词袋模型最初被用在文本分类中,将文档表示成特征矢量。它的基本思想是假定对于一个文本,忽略其词序和语法、句法,仅仅将其看做是一些词汇的集合,而文本中的每个词汇都是独立的。简单说就是讲每篇文档都看成一个袋子(因为里面装的都是词汇,所以称为词袋,Bag of words即因此而来),然后看这个袋子里装的都是些什么词汇,将其分类。如果文档中猪、马、牛、羊、山谷、土地、拖拉机这样的词汇多些,而银行、大厦、汽车、公园这样的词汇少些,我们就倾向于判断它是一篇描绘乡村的文档,而不是描述城镇的。 serachFeatures.py中,前面主要是一些通过parse使得可以在敲命令行的时候可以向里面传递参数,后面就是提取SIFT特征,然后聚类,计算TF和IDF,得到单词直方图后再做一下L2归一化。一般在一幅图像中提取的到SIFT特征点是非常多的,而如果图像库很大的话,SIFT特征点会非常非常的多,直接聚类是非常困难的(内存不够,计算速度非常慢),所以,为了解决这个问题,可以以牺牲检索精度为代价,在聚类的时候先对SIFT做降采样处理。最后对一些在在线查询时会用到的变量保存下来。对于某个图像库,我们可以在命令行里通过下面命令生成BoF。 query.py只能每次查找一张图片,并返回与之匹配度(递减)最接近的6张图片
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值