词袋模型(Bag-of-words) 和TF-IDF

TF-IDF是一种统计方法,用于评估词在文件中的重要性。它结合词频(TF)和逆文档频率(IDF),使得频繁但在文档集中不常见的词获得高权重,有助于过滤常见词语,保留关键信息。
摘要由CSDN通过智能技术生成

文章目录

TF-IDF(Term Frequency-Inverse Document Frequency),词频-逆文件概率,一种用于资讯检索与资讯探寻的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个文件语料库中一份文件的重要程度。

字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

上述引用总结就是, **一个词语在一篇文章中出现次数越多, 同时在所有文档中出现次数越少, 越能够代表该文章。**这也就是TF-IDF的含义。

**TF(Term Frequency, 词频)**表示词条在文本中出现的频率
T F i , j =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cachel wood

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值