few-shot learning几篇论文

Prototypical Networks for Few-shot Learning 论文链接:https://arxiv.org/abs/1703.05175 开源代码:https://github.com/jakesnell/prototypical-networks 发表时间:2017年...

2019-05-23 10:46:04

阅读数 11

评论数 0

Learning to Compare: Relation Network for Few-Shot Learning论文笔记

前言 在语音问答系统领域,很多时候,每一个类所拥有的训练数据量是很少的,采用传统的分类器进行训练,很可能出现overfitting,为了应对这种问题,最近要研究一下小样本学习。 关于小样本学习的基本概念,可以参看https://www.chainnews.com/articles/65013297...

2019-05-22 13:37:44

阅读数 10

评论数 0

BiLSTM-CRF中CRF层解析-5

2.6 预测标签 在之前的章节中,我们详细地介绍了BiLSTM-CRF模型和CRF损失函数的细节,大家可以采用开源工具(Keras, Chainer, TensorFlow等)完成自己的BiLSTM-CRF模型。模型搭建过程中,非常重要的是反向传播的实现,不要担心,这些框架在训练过程中可以自动的完...

2019-04-25 10:12:00

阅读数 94

评论数 0

BiLSTM-CRF中CRF层解析-4

2.5 所有路径的总得分 上节中,我们介绍了如何计算一个路径的标签得分eSie^{S_i}eSi​,那么,还有一个问题需要解决,即怎么计算所有路径的总得分:Ptotal=P1+P2+…+PN=eS1+eS2+…+eSNP_{total} = P_1 + P_2 + … + P_N = e^{S_1...

2019-04-24 13:39:09

阅读数 14

评论数 0

BiLSTM-CRF中CRF层解析-3

2.3 CRF损失函数 CRF损失函数包含了真实路径得分和所有可能路径的总得分,如果预测对的情况下,真实路径在所有可能路径中得分应该是最高的。 举个栗子,假设我们数据的标签如下表所示: Label Index B-Person 0 I-Person 1 B-Organiza...

2019-04-23 10:13:22

阅读数 16

评论数 0

BiLSTM-CRF中CRF层解析-2

回顾 上篇博文中,我们知道CRF层可以从训练数据中学习到一些约束条件,从而确保最终的预测标签序列是有效的。 约束条件可能是: 一句话中第一个单词的标签应该是“B-“ or “O”,而不能是"I-"; “B-label1 I-label2 I-label3 I-…”中,labe...

2019-04-22 16:22:06

阅读数 71

评论数 0

BiLSTM-CRF中CRF层解析-1

最近,使用BiLstm-CRF模型,但是对CRF层的算法实现不是很理解,在网上找了很多资料也没解答我心中的疑问,后边看到了英文版的解析,很清晰,因此,将其进行翻译。 ...

2019-04-22 13:50:03

阅读数 77

评论数 0

通俗易懂维特比算法

作者:athemeroy 原文:https://blog.csdn.net/athemeroy/article/details/79339546 篱笆网络(Lattice)的最短路径问题 这个问题长什么样子? 尝试着回答一下这个问题(就算没办法回答也请先别关闭这个窗口!): 已知下图的篱笆网络,每...

2019-04-20 11:26:16

阅读数 31

评论数 0

深度学习提高资料

慢慢收集记录 李理的博客 http://fancyerii.github.io/2019/03/14/dl-book/ 内容在读,读后评论

2019-04-17 14:41:01

阅读数 18

评论数 0

隐马尔可夫(HMM)、前/后向算法、Viterbi算法

转自:https://www.cnblogs.com/sddai/p/8475424.html HMM一直想彻底弄明白,这篇文章较为通俗易懂,留下来多看几遍 HMM的模型 图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序...

2019-04-17 09:24:24

阅读数 52

评论数 0

Utterance-level Aggregation For Speaker Recognition In The Wild笔记

论文链接:https://arxiv.org/abs/1902.10107v1 开源代码:http://www.robots.ox.ac.uk/~vgg/research/speakerID/ 网络结构 主干网络:Thin-ResNet,提取frame-level特征 NetVLAD或Ghos...

2019-04-04 09:01:34

阅读数 54

评论数 0

Deep Speaker笔记

结构图及解析 输入:每个miniBatch的数据格式为(N, C, H, W),N为batch_size, C为通道数,此处的数目为3,顺序为delta2 delta1 fbank, H文章中为时间帧数,该参数是可变的,但是在每个miniBatch中是一样的, W为每帧的特征数目,文章中取值为...

2019-04-03 10:35:25

阅读数 38

评论数 0

kenlm c++

系统 ubuntu 编译问题 按照官网给的编译方案,会在build/lib 下生成四个.a静态文件,将这四个文件通过target_link_libraries 添加在工程后,虽然include没有问题,但是加载模型时会报一堆的 model.cc

2019-03-13 16:36:00

阅读数 96

评论数 0

LSTM JIT

前言 项目部署考虑到加密,算法是基于Pytorch进行开发的,所以决定利用Pytorch的新功能torch.jit进行封装,以便直接将模型用C++调用。 参考 Pytorch官方torch.git教程:https://pytorch.org/docs/stable/jit.html Pytorch...

2019-03-06 14:21:44

阅读数 43

评论数 0

声纹识别技术简介——化繁为简的艺术

问答系统的项目终于落地,从门外汉到做成产品,用了5个月的时间,还是满满的成就感,现在又要向新的领域进发,先从声纹识别的发展史学起。 转自:https://blog.csdn.net/jojozhangju/article/details/78637118 声纹识别,也称作说话人识别,是一种通过声...

2019-02-26 10:30:26

阅读数 142

评论数 0

通过 Q-learning 深入理解强化学习

本文将带你学习经典强化学习算法 Q-learning 的相关知识。在这篇文章中,你将学到:(1)Q-learning 的概念解释和算法详解;(2)通过 Numpy 实现 Q-learning。 原文链接:http://baijiahao.baidu.com/s?id=15979788599627...

2019-01-22 09:24:50

阅读数 106

评论数 0

ubuntu安装pylucene

环境 ubuntu16.04 Anaconda3下 python3.6.4 JDK1.8.0_102 PyLucene7.5.0 安装工具 1.安装jdk $sudo apt-get install openjdk-8-jdk 2.安装pylucene 官网下载地址:ht...

2019-01-10 17:40:24

阅读数 104

评论数 0

AnyQ编译问题

系统:ubuntu 16.04 问题一: CMakeFiles/extern_paddle.dir/build.make:111: recipe for target ‘third_party/paddle/src/extern_paddle-stamp/extern_paddle-bui...

2018-12-28 14:53:46

阅读数 545

评论数 3

markdown数学公式

每次打公式都要查查查,一咬牙将自己用的整理一下吧,有新的随时更新。 数学符号 符号 markdown 描述 ∈\in∈ \in 属于 ∉\notin∈/​ \notin 不属于 ∑\sum∑ \sum 累加 ∑...

2018-12-21 11:49:37

阅读数 63

评论数 0

Enhanced Network Embeddings via Exploiting Edge Labels笔记

因为要做KBQA,最近会看一些知识图谱相关的论文,这篇论文是network embeddings类看的第一篇,理解难免有误,望大佬指正。 原文链接:https://arxiv.org/abs/1809.05124?context=physics.soc-ph 摘要 Netwo...

2018-12-21 11:27:31

阅读数 89

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭