Caffe教程:训练自己的网络结构来分类。

本站的内容是训练自己的网络结构来分类鸟和狗。

1.准备自己的数据集。

       1.1  在caffe的data文件夹下面建立一个myself文件夹。在myself文件夹下面建立train和test文件夹。

 

       1.2 百度下载10张鸟的图片和10张狗的图片最为训练集。再下载4张鸟的图片和4张狗的图片最为验证集。(只是为了给大家演示一下就没有弄太多的数据集)。对训练集图片进行顺序编号dog1.jpeg,dog2.jpeg .... dog10.jpeg。bird1.jpeg  bird2.jpeg ...  bird10.jpeg。对验证集的图片进行编号 dog1.jpeg,dog2.jpeg .... dog4.jpeg。bird1.jpeg  bird2.jpeg ...  bird4.jpeg。 将训练集图片复制到train文件夹下面。验证集图片复制到test文件夹下面。

       1.3 在myself文件夹下面新建train.txt 和 test.txt文本文档。0表示bird类别  1表示dog类别。

            

            


2.制作数据集和均值文件:

    2.1 在caffe的examples文件夹下面建立一个 myself 文件。找到caffe -> examples -> imagenet文件夹,将里面的create_imagenet.sh 、make_imagenet_mean.sh 、train_caffenet.sh 这三个文件复制到 examples文件夹下面的myself文件夹里面。

     2.2 修改create_imagenet.sh 将里面的路径设置文自己的路径。下面是我修改的路径。(只修改了红色圈住的地方,将前面的路径修改成自己的绝对路径,然后RESIZE=TRUE,是为了将图片都resize成统一大小的图片。)设置好之后运行sh文件就可以在examples->myself文件夹下面得到生成的两个lmdb文件夹。

     

    2.3生成均值文件:修改make_imagenet_mean.sh   只是修改路径 把有的路径修改成自己的绝对路径。修改完之后运行sh文件,就可以在myself文件夹下面得到一个  imagenet_mean.binaryproto 文件。

      

3.训练自己的网络:(为了方便起见我直接拿caffenet的网络结构来训练,你可以把你的网络结构复制进来替换掉caffenet网络)找到 caffe-> models -> bvlc_reference_caffenet  将里面的solver.prototxt 和 train_val.prototxt两个文件复制到 examples->mtself 文件夹下面。  修改train_val.prototxt文件(红框修改成自己的文件夹路径,绿框为batch_size大小由于数据集太少建议设置成1.)



修改solver.prototxt文件:(换成自己的路径)



修改train_caffenet.sh文件(修改成自己的路径):

修改完之后直接  bash  train_caffenet.sh 就可以训练网络了。

ps:你可以修改train_val.prototxt将里面的网络结构修改成你自己的网络来训练。

训练结果:


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值