要不要去做一件事

衡量一件事要做与否,不要想太多能够得到什么,反而考虑的是你要付出的,你是否能够承受。

2018-05-04 10:45:31

阅读数 127

评论数 0

周末阅读

重要发现::1. 使用分类模型的前提假设:每个样本相互独立。而大盘涨跌每一个交易日并不是相互独立,而是沿着时间轴关联的,或许使用回归,将样本分成时间段,更合理。 2. 同样个股之间也并不是相互独立的样本存在,有行业关联,上下游关联等等。 起始时间:500:201811,201812(22000...

2016-10-14 08:49:27

阅读数 342

评论数 2

python向量之间相似性的计算方法(持续更新中)

from:https://blog.csdn.net/u011412768/article/details/86714540 亲测有效的方法: 1、余弦相似性(cosine) (1)使用sklearn中的向量相似性的计算包,代码如下: 这个函数的输入是n个长度相同的list或者array,...

2019-06-10 17:48:16

阅读数 4

评论数 0

读书笔记:《投资正途》-丁圣元

点评: 1. 该书最重要的部分是将个股走势与市场(宽基指数)走势比较,提出了自上而下的选股方法。 2. 上择时:市场走势向上或者震荡时考虑买入,选择个股,走势向下清盘。 3. 下选股:在判断买入时机时候,设定一个时间区间,在该区间内将个股股票走势与市场走势比较,从而将个股分为三类,强与市场,...

2019-05-09 11:42:31

阅读数 281

评论数 0

从个人投资者角度看技术分析与基本分析

作者:刘鹏程Sai.L 链接:https://zhuanlan.zhihu.com/p/19810363 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 现在刚刚开始关注证券投资的朋友可能必然面临一个极大的困惑,那就是在技术分析和基本面分析这两种分析方式中如何做出...

2019-04-11 17:28:39

阅读数 128

评论数 0

交易因子对月度收益的重要性排名

2019-04-11 09:28:58

阅读数 163

评论数 2

完全图解RNN、RNN变体、Seq2Seq、Attention机制

from:https://zhuanlan.zhihu.com/p/28054589 本文主要是利用图片的形式,详细地介绍了经典的RNN、RNN几个重要变体,以及Seq2Seq模型、Attention机制。希望这篇文章能够提供一个全新的视角,帮助初学者更好地入门。 一、从单层网络谈起 在学习...

2019-04-10 14:48:40

阅读数 103

评论数 0

ROC和AUC理解

from:https://www.cnblogs.com/king-lps/p/9501572.html 一. ROC曲线概念 二分类问题在机器学习中是一个很常见的问题,经常会用到。ROC(Receiver Operating Characteristic) 曲线和AUC(Area Under...

2019-04-10 09:15:57

阅读数 44

评论数 0

深度学习之Attention Model(注意力模型)

from:http://www.cnblogs.com/jiangxinyang/p/9367497.html 1、Attention Model 概述   深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,...

2019-04-08 16:05:15

阅读数 139

评论数 0

深度学习之从RNN到LSTM

from:https://www.cnblogs.com/jiangxinyang/p/9362922.html 1、循环神经网络概述     循环神经网络(RNN)和DNN,CNN不同,它能处理序列问题。常见的序列有:一段段连续的语音,一段段连续的手写文字,一条句子等等。这些序列长短不一,又...

2019-04-08 15:21:08

阅读数 201

评论数 0

传统文本分类和基于深度学习文本分类

用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路、做法和部分实践的经验。 业务问题描...

2019-04-08 13:12:20

阅读数 464

评论数 0

自然语言处理入门(4)——中文分词原理及分词工具介绍

from:https://blog.csdn.net/flysky1991/article/details/73948971 本文首先介绍下中文分词的基本原理,然后介绍下国内比较流行的中文分词工具,如jieba、SnowNLP、THULAC、NLPIR,上述分词工具都已经在github上开源,后...

2019-03-29 15:35:23

阅读数 124

评论数 0

主流深度学习框架对比

from:https://blog.csdn.net/zuochao_2013/article/details/56024172 深度学习研究的热潮持续高涨,各种开源深度学习框架也层出不穷,其中包括TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、The...

2019-03-21 14:17:27

阅读数 365

评论数 0

词向量和语言模型

from:http://licstar.net/archives/328 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领域中应用的理解和总结,在此分享。其中必然有局限性,欢迎各种交流,随便拍。   Deep Learning 算法已经在图像和音频领域取得了惊人...

2019-03-19 13:22:42

阅读数 308

评论数 0

基于Text-CNN模型的中文文本分类实战

from:https://www.jianshu.com/p/f69e8a306862 深度学习在文本分类中的鼻祖-TextCNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结。 本文介绍NLP中文本分类任务中核心流程进行...

2019-03-19 09:31:49

阅读数 409

评论数 0

中文文本分类对比(经典方法和CNN)

from:https://www.jianshu.com/p/dc00a5d597ed 背景介绍 笔者实验室项目正好需要用到文本分类,作为NLP领域最经典的场景之一,文本分类积累了大量的技术实现方法,如果将是否使用深度学习技术作为标准来衡量,实现方法大致可以分成两类: 基于传统机器学习的文本...

2019-03-19 09:30:00

阅读数 311

评论数 0

使用word2vec训练中文词向量

训练过程 模型:gensim工具包word2vec模型,安装使用简单,训练速度快 语料:百度百科500万词条+维基百科30万词条+1.1万条领域数据 分词:jieba分词,自定义词典加入行业词,去除停用词 硬件:8核16g虚拟机 数据预处理 维基百科数据量不够大,百度百科数据量较全面,内...

2019-03-15 17:29:32

阅读数 94

评论数 0

NLP文本处理流程

通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词条内容处理成单行数据,word2vec训练原理是基于词共现来训练词之间的语义联系的。不同词条内容需分开训练 2 中文分词:中文NLP很重要的一步就是分词了,分词的好坏很大程度影响到后续的模型...

2019-03-15 17:25:59

阅读数 58

评论数 0

训练自己的词向量模型

from:https://blog.csdn.net/gdh756462786/article/details/79108665/ 一、gensim介绍 gensim是一款强大的自然语言处理工具,里面包括N多常见模型: - 基本的语料处理工具 - LSI - LDA - HDP - DT...

2019-03-15 15:55:36

阅读数 484

评论数 0

干货|NLP领域中文vs英文有什么异同点,中文NLP有什么独特的地方?

https://www.jianshu.com/p/d89313ac10dc 文章来源:知乎 作者:刘知远、李嫣然 刘知远关于NLP的精彩回答 从实用文本分析技术而言,如果只做主题聚类、文本分类等任务的话,中英文最大差别就在于,中文需要做自动分词,相关工具包已经很多了,包括题主提到的Jie...

2019-03-13 10:18:39

阅读数 102

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭