基于Bert的文本精排算法

精排算法在许多场景中都有应用,如文本检索、对话问答、推荐等场景中,使用匹配算法首先召回了一系列相似的样本集合,然后需要对这些召回的样本进行精准的排序,得到最优的序列返回给用户。

对于faq问答系统,使用文本匹配和es查询出召回样本集合后,需要返回top1的结果作为最相似问题返回,输入数据为query以及候选doc,输出为相似的百分比。

一、数据预处理

首先需要将原始的问题,回答的数据构造成文本匹配的任务,即{问题,相似问题1,相似问题2,无关问题1,无关问题2.。。。},标签则为{1,1,0,0....},如果有给匹配的相关性进行等级标注,标签也可改为相应的相关性等级。

在构造数据的时候如果没有预先打标签怎么办,可以采用随机负采样的方法,把原始问答对中,其他问题随机采样成无关问题,构成弱标签的数据集。

构造完数据集后,需要再将其转换成bert模型的输入格式,输入格式如下:

[CLS]sentence1[SEP]sentence2[SEP]

    def encode_v2(self, text_1, text_2):
        '''
        交互式文本匹配编码
        '''
        _tokenizer = tokenization.FullTokenizer(self.config['vocab_path'], do_lower_case=True)
        if isinstance(text_1, str):
            split_tokens_1 = _tokenizer.tokenize(text_1)
        else:
            split_tokens_1 = text_1
        if isinstance(text_2, str):
            split_tokens_2 = _tokenizer.tokenize(text_2)
        else:
            split_tokens_2 = text_1

        if len(split_tokens_1) + len(split_tokens_2) > self.config['seq_len']:
            split_tokens_2 = split_tokens_2[:self.config['seq_len'] - len(split_tokens_1)]
            sequence_length = self.config['seq_len']
        else:
            sequence_length = len(split_tokens_1) + len(split_tokens_2)
            while (len(split_tokens_1) + len(split_tokens_2) < self.config['seq_len']):
                split_tokens_2.append("[PAD]")

        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for i in split_tokens_1:
            if i not in _tokenizer.vocab:
                tokens.append("[UNK]")
                print(i)
                continue
            tokens.append(i)
            segment_ids.append(0)
        tokens.append("[SEP]")
        segment_ids.append(0)
        for i in split_tokens_2:
            if i not in _tokenizer.vocab:
                tokens.append("[UNK]")
                print(i)
                continue
            tokens.append(i)
            segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)
        word_ids = _tokenizer.convert_tokens_to_ids(tokens)
        word_mask = []
        for i in word_ids:
            if i == "[PAD]":
                word_mask.append(0)
            else:
                word_mask.append(1)
        return word_ids, segment_ids, word_mask, sequence_length

二、NDCG损失计算

如何定义损失函数呢?原理上说,模型是一个文本分类的任务,目标是把两个句子的相关性分类到对应的类别上。然而我们的精排算法并不是仅仅为了计算句子的相关性,而是需要将一个句子候选集根据相关性排序,从而预测出最优的排序序列。因此损失函数是计算文本列表的排序损失,常见的损失函数有几种,在推荐系统中经常用到,就不详细展开说了,目前用到的是NDCG(Normalized Discounted Cumulative Gain)损失,计算步骤分为以下几步:

comulative gain(CG)表示对topK个相关性的加和:CG@k = \sum r(i),r表示相关性的数值

discounted cumulative gain(DCG)引入位置特征,排前面的元素增益较高,DCG@k = \sum_{i}^{K}\frac{2^{r(i))}-1}{log{_{2}}^{i+1}}

若对于排序列表来说最佳排序为{d1,d2,d3,....,dk},该序列的DCG值为IDCG=DCGmax@K

那么NDCG@K = \frac{DCG@K}{IDCG@K}

计算完这些数值后loss采用lambda loss

Loss = \sum _{r(i)>r(j)}\ |\Delta NDCG|log{_{2}}^{(1+e^{-\sigma (s_{i}-s_{j})})}

对于代码来说就是矩阵的计算,代码如下:

    def lambda_rank_loss(self, scores, labels):
        '''
        lambda rank损失
        '''
        #delta_lambda计算
        rank = tf.range(1., tf.cast(self.config['num_samples'], dtype=tf.float32) + 1)
        rank = tf.tile(rank, [self.config['batch_size']])
        rank = tf.reshape(rank, tf.shape(labels))
        rel = 2 ** labels - 1
        sorted_label = tf.sort(labels, direction='DESCENDING')
        sorted_rel = 2 ** sorted_label - 1
        cg_discount = tf.math.log(1. + rank)
        dcg_m = rel / cg_discount
        dcg = tf.reduce_sum(dcg_m)
        stale_ij = dcg_m
        new_ij = rel / tf.transpose(cg_discount, perm=[0, 2, 1])
        stale_ji = tf.transpose(stale_ij, perm=[0, 2, 1])
        new_ji = tf.transpose(new_ij, perm=[0, 2, 1])
        #new dcg
        dcg_new = dcg - stale_ij + new_ij - stale_ji + new_ji
        #delta dcg
        dcg_max = tf.reduce_sum(sorted_rel / cg_discount)
        ndcg_delta = tf.abs(dcg_new - dcg) / dcg_max

        #
        s_i_minus_s_j = scores - tf.transpose(scores, perm=[0, 2, 1])
        #上三角矩阵
        mask1 = tf.linalg.band_part(ndcg_delta, 0, -1)
        #下三角矩阵
        mask2 = tf.linalg.band_part(s_i_minus_s_j, -1, 0)
        _loss = mask1 * tf.transpose(mask2, perm=[0, 2, 1])
        loss = tf.reduce_sum(_loss)
        return loss

三、模型训练

将Bert计算出的logits当作相关性r,带入到上面的loss中训练就行了,在实际过程中,还有一个对相关性大小的界定,模型输出的r为0-1之间的数值,阈值定在多少,相关性为1,会影响最终模型的效果,因此需要在测试集上进行探索。

四、总结

以上就是对bert模型精排算法的探索与实践,总的来说大体框架还是没太大的变化,主要是数据集构造和loss函数的选择,数学公式还是有一点复杂,如果数据集质量不够好还是不推荐使用,因为最终效果指标不好界定,top1和top2区别也不一定太大,收益不是特别明显。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值