Linux下安装Python,并在Linux下运行python代码文件

本文详细介绍了在CentOS系统上配置YUM源、安装Python3.7.4、设置Python环境变量、安装Spark以及配置Spark环境的过程。通过阿里云镜像下载相关软件,并演示了使用Python的pyspark进行KMeans聚类的基本操作。最后,文章还展示了如何设置pip的豆瓣源,并验证Python代码执行结果。
摘要由CSDN通过智能技术生成

CentOS配置源

1.查看本地yum源

ll /etc/yum.repos.d/

2.把默认yum源备份

mkdir /opt/centos-yum.bak
mv /etc/yum.repos.d/* /opt/centos-yum.bak/

3.查看系统的版本

cat /etc/redhat-release

在这里插入图片描述
4.下载对应的YUM源:

wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo

5.清除缓存

yum clean all
yum makecache   
yum list 

6.检测你的环境中是否有python,查看版本:

python -V

默认带的有python2.7.5,我们需要安装个python3.7.4,别的版本也可以

wget https://www.python.org/ftp/python/3.7.4/Python-3.7.4.tgz

下载完之后,命令ls查看当前目录下的文件,可以看到Python-3.7.4.tgz,我们需要解压这个文件

tar -zxf Python-3.7.4.tgz -C /opt/soft/

进入解压后的目录,进行编译,指定编译后生成文件的位置

 cd soft/Python-3.7.4/
./configure --prefix=/usr/local/python3

7.安装python可能用到的包和依赖:

yum install openssl-devel bzip2-devel expat-devel gdbm-devel readline-devel sqlite-devel
yum install gcc
yum - y install zlib*
yum install libffi-devel -y

8.安装python:

make && make install

9.安装完成设置软连接:

ln -s /usr/local/python3/bin/python3 /usr/bin/python3
ln -s /usr/local/python3/bin/pip3 /usr/bin/pip3

10.查看版本:

python3 -V
pip3 -V

安装spark

1.解压缩重命名
tar -zxf spark-2.4.4-bin-hadoop2.6.tgz -C /opt/soft
mv spark-2.4.4-bin-hadoop2.6 spark244

2.配置spark/conf下的spark-env.sh和sbin下的spark-config.sh文件:
cp spark-env.sh.template spark-env.sh
vi spark-env.sh

export SPARK_MASTER_HOST=192.168.181.132 #主节点IP
export SPARK_MASTER_PORT=7077 #任务提交端口
export SPARK_WORKER_CORES=2 #每个worker使用2核
export SPARK_WORKER_MEMORY=2g #每个worker使用3g内存
export SPARK_MASTER_WEBUI_PORT=8888 #修改spark监视窗口的端口默认8080

vi spark-config.sh

export JAVA_HOME=/opt/soft/jdk180

配置并激活spark环境变量:无需配置PATH

#spark
export SPARK_HOME=/opt/soft/spark244
source /etc/profile

设置pip豆瓣源

root目录下新建.pip文件夹:然后新建文件pip.conf

#豆瓣源,可以换成其他的源
index-url = https://pypi.douban.com/simple
#添加豆瓣源为可信主机,要不然可能报错
trusted-host = pypi.douban.com 

Python代码:

import findspark
findspark.init()
from pyspark.sql import SparkSession
from pyspark.ml.clustering import KMeans
from pyspark.sql.types import DoubleType
from pyspark.sql.functions import col
from pyspark.ml.feature import VectorAssembler


if __name__ == '__main__':
    spark = SparkSession.builder.master("local[8]").config("spark.debug.maxToStringFields","120").config("spark.executor.memory", "3g")\
        .appName("mymodel").getOrCreate()
    df = spark.read.format("CSV").option("header","true")\
        .load("hdfs://192.168.181.132:9000/events/data/events.csv")
    cols = [c for c in df.columns if c.startswith("c_")]
    feas = cols.copy()
    cols.insert(0,"event_id")
    df1 = df.select([col(c).cast(DoubleType()) for c in cols])
    #可以将多列合成一列,但是输入的数据必须不能是str或者float
    va = VectorAssembler().setInputCols(feas).setOutputCol("features")
    res = va.transform(df1).select("event_id", "features")

    model = KMeans().setK(35).setFeaturesCol("features").setPredictionCol("predict").fit(res)
    r= model.transform(res).select(col("event_id").alias("eventid"), col("predict").alias("eventtype"))
    r.coalesce(1).write.option("sep", ",").option("header", "true").csv("hdfs://192.168.181.132:9000/events/eventtype",
                                                                         mode="overwrite")

    spark.stop()

把上面python的代码文件myps.py放到lunix的一个路径下,我的是在/opt下

导包:

pip3 install findspark
pip3 install numpy

然后运行改文件

python3 /opt/myps.py

查看hdfs上的文件,验证代码是否执行成功

hdfs dfs -cat /events/eventtype/part-00000-96155969-937f-481e-a8c0-255488d96433-c000.csv|wc -l
Linux安装 PyConcrete 加密 Python 代码的步骤如下: 1. 安装 Python 和 pip PyConcrete 是一个 Python 模块,因此需要安装 Python 和 pip。在 Ubuntu 上,可以使用以下命令安装: ``` sudo apt update sudo apt install python3 python3-pip ``` 2. 安装 PyConcretee 使用 pip 安装 PyConcretee: ``` pip3 install pyconcrete ``` 3. 创建加密脚本 创建一个 Python 脚本,将要加密和保护。例如,我们可以创建一个名为 `my_script.py` 的文件,其中包含以下内容: ``` def my_function(): print("Hello, world!") if __name__ == '__main__': my_function() ``` 4. 创建加密配置文件 创建一个名为 `pyconcrete.cfg` 的文件,并将以下内容添加到其中: ``` [pyconcrete] key = my_secret_key mode = encrypt ``` 其中,`key` 是一个用于加密和解密文件的密钥,`mode` 是指定 PyConcretee 运行模式的选项。在此示例中,我们将使用 `encrypt` 模式加密文件。 5. 加密脚本 使用 PyConcretee 加密脚本: ``` pyconcrete-tool.py encrypt my_script.py -c pyconcrete.cfg -o my_script_encrypted.py ``` 这将使用 `pyconcrete.cfg` 中指定的密钥和模式,将 `my_script.py` 文件加密,并将结果保存到 `my_script_encrypted.py` 文件中。 6. 运行加密脚本 使用 Python 运行加密脚本: ``` python3 my_script_encrypted.py ``` 这将运行已加密的 `my_script_encrypted.py` 文件,并输出 `Hello, world!`。 在以上步骤中,我们使用 PyConcretee 加密了一个 Python 脚本,并在 Linux运行了加密后的脚本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值