哈喽大家好,我是 doooge ,今天给大家带来 Trie 的详解。
字典树 Trie 详解 \Huge \texttt{字典树 Trie 详解} 字典树 Trie 详解
1.Trie是什么?
Trie 也叫字典树,前缀树,其本质就是一棵字符树。它也是 AC自动机 的一部分。
这是 Trie 的 oiwiki介绍。
Trie 通常用来解决查找一个字符串在某个集合里是否出现过,也可以排序,它的时间复杂度很优秀, O ( ∣ s ∣ ) O(|s|) O(∣s∣) 就可以做到一次查询( ∣ s ∣ |s| ∣s∣ 表示 s s s 的长度)。
2.Trie的创建
如果需要在这棵树中查询,就必须要创建这棵树。如果我们要存储 a n t , b a g , b a t , c a t , c a r ant,bag,bat,cat,car ant,bag,bat,cat,car 这五个字符串,那么这棵树长这样子:
在存储的过程中,我们不必存储每个节点的信息,只要记录它的下一步能到哪里去就行了。在没有字符串存进去的时候,该树只有一个 root 节点。
比如说我们第一个要把 b a g bag bag 存进去时,此时这棵树只有一个 root 节点,我们需要建立一条边 b b b,将 b b b 节点存进去。之后我们需要建立一条边 a a a,将 b a ba ba 节点存进去,以此类推,直到存到 b a g bag bag 节点为止。
再比如说,我们第一个要把 b a t bat bat 存进去时,此时这棵树已经有了 b , b a b,ba b,ba 节点,我们不需要建立一条新边,只要往下搜即可。到了 b a ba ba 节点,因为没有 b a t bat bat 节点,所以得建立一条边 t t t,把 b a t bat bat 节点存上去。
当然,当一些题目需要询问存进去了哪些串时,需要加一个标记或者计数数组(这取决于该题是否要给它们计数),当存完了时打上标记即可。
这样,一棵 Trie 树就建好了,建树的时间复杂度为:
O ( ∑ i = 1 n ∣ s i ∣ ) O(\sum_{i=1}^{n} |s_i|) O(i=1∑