- 博客(868)
- 收藏
- 关注
原创 OpenCV(五十三):Haar人脸识别
Haar 人脸识别算法是计算机视觉发展史上的重要里程碑,它通过Haar 特征、积分图、Adaboost 和级联分类器的巧妙结合,实现了高效、实时的人脸检测。虽然在精度和鲁棒性方面已不及现代深度学习方法,但其轻量、高效、易用的特性使其在特定应用中仍具生命力。
2026-01-08 23:03:33
539
原创 OpenCV(五十二):图像修复
实时性要求高硬件资源受限修复区域较小工程稳定性优先Telea 算法适合大多数通用场景。Navier-Stokes 算法更适合结构修复。前景检测图像分割视频处理等模块结合,构成完整的视觉处理链路。
2026-01-04 21:35:16
491
原创 OpenCV(五十一):视频前后景分离
背景(Background)前景(Foreground)本质是一个逐像素分类问题。实现简单性能稳定实时性强参数可控其中MOG2 和 KNN 是最推荐的通用方案。通过合理的参数设置与后处理策略,可以在大多数实际场景中取得较好的分离效果。候选区域生成前端轻量检测模块深度学习的前置过滤从而构建高效、可扩展的视频分析系统。
2026-01-04 21:34:16
957
原创 linux基础66——logrorate
使用独立配置文件明确logrotate 是 Linux 系统中不可或缺的日志管理工具,它通过灵活的配置机制,实现了日志文件的自动轮转、压缩与清理,有效避免了日志无限增长带来的系统风险。保证系统稳定运行降低磁盘空间压力提升运维自动化水平。
2026-01-03 21:22:38
900
原创 OpenCV(五十):meanshift图像分割
MeanShift 是一种经典而优雅的图像分割算法无需指定类别数能在颜色与空间联合特征中进行自适应聚类分割结果自然、边缘友好在 OpenCV 中,提供了工程化实现,使其在实际项目中仍具有一定实用价值。但由于其计算复杂度较高,更适合离线图像处理、预处理阶段或对分割质量要求高的应用场景。
2026-01-03 21:13:34
1175
原创 OpenCV(四十九):GrabCut
GrabCut 使用一个能量函数 E 来量化分割的好坏。这个能量函数由两部分组成:数据项(Data Term)和平滑项(Smoothness Term)。数据项(Unary Term):表示单个像素属于前景或背景的概率。基于颜色分布模型,如果一个像素的颜色更接近前景模型,则其属于前景的能量较低。平滑项(Binary Term):表示相邻像素的标签一致性。如果两个相邻像素颜色相似但标签不同,则会增加能量惩罚,以鼓励平滑的边界。数学上,能量函数定义为:α:每个像素的标签(0 为背景,1 为前景)。
2025-12-28 21:26:14
678
原创 音视频学习(八十):离散余弦变换(DCT)
离散余弦变换是视频有损压缩的基石技术优秀的能量集中特性与人眼视觉模型高度契合与预测编码完美结合计算复杂度与压缩效率平衡良好虽然现代编码引入了更复杂的工具(自适应预测、可变块、环路滤波),但DCT 及其整数变种依然是视频编码不可替代的核心模块。没有 DCT,就没有高效的视频有损压缩。
2025-12-28 19:08:11
1112
原创 音视频学习(七十九):LZW编码
数据压缩是减少数据存储空间和传输带宽的关键技术,按照是否丢失信息分为和两种。有损压缩(如JPEG图像、MP3音频、H.264/H.265视频编码)允许一定信息损失,以换取更高的压缩比,常用于多媒体领域,因为人类感官对轻微损失不敏感。无损压缩则确保解压后数据与原始完全相同,适用于文本、程序、可执行文件、科学数据和对精度要求高的场景。LZW(Lempel-Ziv-Welch)算法是一种经典的字典式无损压缩算法,由Abraham Lempel、Jacob Ziv和Terry Welch于1984年提出。
2025-12-26 20:52:05
1043
原创 音视频学习(七十八):行程编码
行程编码(RLE)作为视频无损压缩的基石技术,以其简单高效在残差处理中发挥关键作用。虽现代codec多用高级熵编码,RLE的变体(如修改版、run-mode)仍活跃于Lagarith、FFV1等专业工具中,特别适合高重复视频。未来,随着AI预测提升残差零run概率,RLE将继续贡献于实时编辑、医疗存档和屏幕捕获等领域。
2025-12-26 20:51:12
927
原创 OpenCV(四十八):图像查找
方法原理基础对尺度不变对旋转不变对光照不变计算速度适用场景模板匹配滑动相关计算××△快精确位置查找、固定模板特征匹配局部不变特征+描述符✓✓✓中物体识别、图像配准、AR直方图比较全局颜色分布统计✓✓△极快颜色相似检索、场景分类感知哈希低频指纹+汉明距离△△✓极快图像去重、近似搜索、反爬虫。
2025-12-26 20:49:19
1131
1
原创 OpenCV(四十七):FLANN特征匹配
FLANN是一种针对大规模数据集的高维近似最近邻搜索算法库。在视频分析中,它通过构建多路随机K-D树(浮点特征)或LSH哈希索引(二进制特征),将特征匹配效率较暴力匹配提升数倍。结合过滤噪点,可在保障实时性的同时实现高精度画面对齐与目标追踪,是支撑大规模视频质量监测的核心算法。
2025-12-26 20:23:13
925
原创 OpenCV(四十六):OBR特征检测
ORB 是一种工程友好、性能优秀、完全开源的特征检测与描述算法。它通过 FAST + BRIEF 的组合,并引入方向估计与旋转不变性,在速度、精度和实用性之间取得了极佳平衡。
2025-12-24 21:34:30
650
原创 OpenCV(四十五):SURF特征检测
SURF 是一种在速度与鲁棒性之间取得良好平衡的经典特征算法,通过 Hessian 矩阵、积分图与 Haar 小波,实现了高效的特征检测与描述。虽然在现代项目中逐渐被 ORB、AKAZE 等自由算法取代,但SURF 仍然是理解特征点算法的重要里程碑。
2025-12-24 21:31:49
724
原创 OpenCV(四十四):SIFT计算描述子
SIFT 描述子通过尺度归一化、方向对齐、空间分块和梯度方向统计,构建了一个高度稳定且区分性极强的 128 维特征向量。OpenCV 对 SIFT 的实现高度工程化,封装了复杂的数学细节,使其在计算机视觉领域长期占据重要地位。尽管在实时性和计算成本上存在不足,但在对匹配精度和鲁棒性要求极高的场景中,SIFT 描述子仍然是一个标杆级算法。
2025-12-22 22:33:28
858
原创 音视频学习(七十七):无损压缩:Huffman编码
Huffman 编码通过为高频符号分配短码、低频符号分配长码,实现无损熵编码。在视频无损压缩中,常用于对预测残差和变换系数进行编码,能够在不丢失任何信息的前提下显著降低码率。
2025-12-21 20:29:20
1003
原创 OpenCV(四十三):分水岭法
基于拓扑地形和数学形态学的区域分割方法通过引入标记控制机制,分水岭从理论方法转变为工程可用算法。在实际项目中,它常与阈值分割、距离变换、形态学处理联合使用,是解决粘连目标分割问题的经典方案。
2025-12-21 19:43:25
654
原创 OpenCV(四十二):图像分割原理
OpenCV 图像分割方法涵盖了从传统图像处理到经典优化理论阈值法:简单高效,适合规则场景边缘法:强调轮廓信息,需后处理区域法:注重区域一致性聚类法:适合颜色分割图论法:效果好但计算复杂。
2025-12-21 19:05:55
1136
原创 音视频学习(七十五):视频压缩:量化
量化(Quantization)是指:将连续值或高精度离散值映射为有限个低精度值的过程DCT / 整数变换后的变换系数量化的数学形式一般为:X:原始变换系数Δ:量化步长Q:量化后的整数值反量化时:由于round操作,反量化无法恢复原始精度,这是信息损失的根源。量化是视频压缩中最核心、最关键、也是最复杂的技术之一它是唯一引入不可逆失真的环节决定了画质与码率的根本平衡与人眼感知、码率控制、编码效率紧密相关预测决定“差多少”,变换决定“怎么表示”,量化决定“丢多少”
2025-12-20 19:11:28
984
原创 音视频学习(七十四):视频压缩:变换编码
变换编码将空间域的残差信号通过数学变换(主要是 DCT 或其整数近似)映射到频率域。利用自然图像信号的特性,将大部分信号能量集中在少数低频系数上。为后续的有损量化阶段创造条件,使得编码器能够高效地丢弃视觉上不重要的高频信息(将它们量化为零)。通过 Z字形扫描,将量化后的稀疏矩阵转化为利于熵编码的高效序列。
2025-12-16 22:49:42
820
原创 音视频学习(七十三):视频压缩:帧间与时间冗余消除
视频压缩中的帧间/时间冗余消除是数字视频技术最重要的发明之一。它主要通过帧间预测将视频序列划分为I、P、B三类帧,通过GOP结构组织。对P帧和B帧,利用运动估计确定当前帧块在参考帧中的位置,生成运动矢量。通过运动补偿,使用运动矢量从参考帧中生成预测块,并计算残差。最终编码并传输的数据是I帧的完整(空间压缩后的)数据P/B帧的运动矢量和残差。
2025-12-16 22:35:28
886
原创 音视频学习(七十二):视频压缩:分块与预处理
分块与预处理通过色彩空间转换和色度降采样,将数据量减少了 50% 左右,并为后续变换编码提供了更优化的数据格式。通过分块(MB/CU),将大规模的帧处理问题分解为可以并行和自适应处理的小规模子问题。通过预处理滤波器,提高了输入信号的质量,减少了噪声对码率的消耗。这些经过预处理和分块的 Y、 U、V 宏块/编码单元,将作为输入,进入视频压缩的核心阶段——运动估计与补偿(消除时间冗余)和变换编码与量化(消除空间冗余),最终生成压缩的比特流。
2025-12-14 21:19:03
493
原创 OpenCV(四十一):SIFT关键点检测
SIFT 是计算机视觉领域中极具代表性的特征检测与描述算法,其通过尺度空间、DoG极值检测、方向分配和高维描述子构建,实现了对尺度和旋转变化的不变性。尽管在性能上不如轻量级算法,但在鲁棒性和匹配准确性方面依然具有不可替代的优势。
2025-12-14 21:00:37
1026
原创 OpenCV(四十):Shi-Tomasi角点检测
Shi-Tomasi 是 Harris 的改进,使用最小特征值作为角点响应,避免了 k 参数,稳定性更好。对角点跟踪(如 LK 光流)效果优异,计算量小,适合实时视频应用。不具备尺度不变性,需要搭配描述子实现匹配。OpenCV 提供,使用简单,可在图像和视频中快速检测角点。通过调整maxCorners和blockSize参数,可以根据应用场景得到稀疏或密集、精确或鲁棒的角点检测效果。
2025-12-09 22:43:03
1096
原创 OpenCV(三十九):Harris角点检测
Harris 角点检测是一种经典而高效的局部特征检测方法,尽管它缺乏尺度不变性,但仍然广泛应用于棋盘格标定、目标跟踪、图像配准等任务中。
2025-12-09 22:40:25
720
原创 OpenCV(三十八):什么是特征检测
角点的本质角点 = 图像中梯度(方向变化)在两个方向上都很大且不同的点。边缘(edge):像山脊,只在一个方向上变化明显角点(corner):像山峰或拐角,在两个方向上都剧烈变化为什么角点重要?可重复性:不同角度、旋转、光照下仍能被检测到定位清晰:位置容易精确到像素级信息足够多:比边缘更有特征性目标跟踪(如 Lucas-Kanade 光流)SLAM、三维重建模板匹配图像拼接(全景图)特征匹配(如 Harris、Shi-Tomasi、FAST)
2025-12-07 20:32:27
799
原创 OpenCV(三十七):外接矩形
快速、简单,但不考虑旋转使用旋转卡尺得到真正意义上的最小外接矩形,是多数精确几何问题首选选择方法需根据对象形状和业务场景决定旋转矩形角度处理要特别注意通过透视变换可获得真实旋转区域的裁剪图像。
2025-12-07 20:12:19
406
原创 OpenCV(三十六):多边形逼近与凸包
H§ 是凸集;P ⊆ H§;H§ 是包含 P 的所有凸集中的最小一个。对比项多边形逼近(approxPolyDP)凸包(convexHull)核心功能轮廓简化计算最小凸包围区域输出近似原轮廓的多边形覆盖所有点的最小凸多边形是否保持原形状凹陷是否(会“撑平”所有凹陷)是否保持点顺序是是(可返回索引)顶点数量取决于 epsilon通常较少常用场景边缘简化、检测三角/矩形等形状手势分析、碰撞检测、几何包围。
2025-12-03 22:25:23
953
原创 OpenCV(三十五):黑帽操作与顶帽操作
顶帽 = 原图 - 开运算黑帽 = 闭运算 - 原图顶帽突出小的亮细节黑帽突出小的暗细节内核大小决定“多大算细节”顶帽用于亮点、亮线增强黑帽用于暗点、暗线增强OCR、医学、检测、图像增强常用两者可结合使用改善光照不均和细节。
2025-11-30 22:33:10
865
原创 OpenCV(三十四):绘制轮廓
在 OpenCV 中,。它基于二值图像搜寻边界,因此轮廓检测通常配合阈值或边缘检测一起使用。OpenCV 将轮廓视为numpy数组的集合,每个轮廓是一个坐标点序列。
2025-11-30 21:26:51
621
原创 OpenCV(三十二):形态学梯度
形态学梯度是膨胀图像与腐蚀图像之间的差值。其中 I 是原始图像。原理:膨胀会使目标(白色区域)边界向外扩张,边界像素的灰度值变高。腐蚀会使目标边界向内收缩,边界像素的灰度值变低。当用膨胀后的图像减去腐蚀后的图像时:在目标内部和背景区域,膨胀和腐蚀的影响非常小或互相抵消,差值趋近于零(黑色)。在物体边界处,膨胀使边界外侧区域变亮,腐蚀使边界内侧区域变暗。两者相减,边界区域会产生一个**高亮(高差值)**的边缘,从而实现边缘检测。主要用途形态学梯度最主要的用途就是提取图像的轮廓(边缘)信息。
2025-11-25 21:36:40
694
原创 OpenCV(三十一):边缘检测Canny
Canny 边缘检测是一种经典且常用的图像边缘提取算法,由 John Canny 在 1986 年提出。它在 OpenCV 中得到了高效实现,是结构化光、SLAM、医学影像分析与机器视觉领域中最常用的边缘检测方法之一。其目标是以最优方式识别图像中的边缘,既能准确检测真实边缘,又能保持较强的抗噪能力与定位精度。边缘通常对应灰度变化剧烈的区域,但噪声也会产生剧烈变化。如果不去噪,边缘会出现大量虚假响应。高斯滤波使用如下数学形式的卷积核:σ 越大,平滑越强,但也会模糊真实边缘。
2025-11-19 22:24:37
1207
1
原创 音视频学习(七十一):图像深度与图像通道数
图像通道表示每个像素包含的独立信息层(components)。灰度图:1 个通道(亮度)RGB 图:3 个通道(R, G, B)RGBA:4 个通道(R, G, B, A=透明度)YUV:通常是 3 通道(Y 亮度、UV 色度)每个通道都存储对应的像素信息,多个通道组合可以形成彩色或多维信息图像。例如:8-bit、16-bit、32-bit float。
2025-11-19 22:03:25
847
原创 OpenCV(三十):高通滤波-拉普拉斯算子
特性说明二阶导数对亮度变化敏感,适合边缘增强各向同性对水平、垂直、斜向边缘响应一致无方向性不能区分边缘方向对噪声敏感噪声通常是高频,会被强化高频强化作用属于典型高通滤波器因此在实际应用中,常与Gaussian 平滑联用,用来降低噪声影响。重点内容原理拉普拉斯是二阶导数,响应强度取决于灰度变化率类型4 邻域、8 邻域卷积核特性各向同性、对噪声敏感、高通滤波使用场景边缘检测、锐化、文档增强、医学影像OpenCV 使用彩色处理问题推荐在 Y 通道上处理避免颜色偏移。
2025-11-18 23:10:15
982
原创 OpenCV(二十九):高通滤波-索贝尔算子
高通滤波强调高频信息,适合边缘增强索贝尔算子通过一阶微分 + 平滑实现鲁棒的边缘检测OpenCV 的cv2.Sobel可方便计算 Gx、Gy 和梯度幅度。
2025-11-16 22:36:05
1028
原创 OpenCV(二十七):中值滤波
中值滤波(Median Filter)是一种在图像处理系统中被广泛采用的非线性滤波算法,主要用于去除脉冲噪声(Salt & Pepper Noise)和消除图像中的孤立噪点。相比均值滤波,中值滤波在保留边缘方面具有明显优势,因此在图像预处理阶段非常常用,如去噪、边缘检测前的降噪等。
2025-11-16 15:10:02
961
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅