高斯消去法是通过矩阵求解中最基础的算法。
原始高斯消去法的思路跟我们解矩阵的方式一样,通过行变换化为标准的上三角矩阵,然后反向代入,进而求出解。
function x=origin_Gauss(Matrix,n,b)
%原始高斯消去法
%输入-Matrix系数矩阵,n方阵大小,b值矩阵
%输出-x解矩阵
if abs(det(Matrix))==0
error('奇异矩阵');
return;
end
for k=1:n-1
for i=k+1:n
factor=Matrix(i,k)/Matrix(k,k);
for j=k+1:n
Matrix(i,j)=Matrix(i,j)-factor*Matrix(k,j);
end
b(i)=b(i)-factor*b(k);
end
end
x(n)=b(n)/Matrix(n,n);
for i=n-1:-1:1
sum=b(i);
for j=i+1:n
sum=sum-Matrix(i,j)*x(j);
end
x(i)=sum/Matrix(i,i);
end
x=x';
end
调用结果见另一篇 列主元高斯消去法