对数作为数学中的一种重要工具,广泛应用于科学、工程和计算领域。它不仅简化了复杂的乘法运算,还在信号处理、数据压缩、放大器设计等实际场景中发挥着重要作用。本文将从对数的基本概念入手,探讨其计算方法及性质。
在了解对数前我们先来了解下压缩数标
压缩数标
在进行电子学测量时,如果用到比1x10-12还小,比1x1012还大的数,这说明在最小和最大数之间差值超过了1兆倍。您能画出一条数轴表示这些值吗?图1显示了这个数轴的一部分。当然,要想画出一条线能表示每个整数(可计数字)确实是不可能的。
我们用单位微法(百万分之一法拉)和皮法(万亿分之一法拉)度量电容量。用毫亨(千分之一亨)或微享(百万分之一亨)度量电感量。
当我们提到电阻值时,您会看到千欧(一千欧姆)和兆欧一百万欧姆)这样的术语。我们用兆赫兹(一百万赫兹)和千兆赫兹(十亿赫兹)度量频率。
您还能认出这些公制的前缀吗?兆(M)、毫(m)、微(μ)、皮(p)
现在让我们尝试用另一种方式来画数轴,图3只显示10倍数的数轴,这样看上去就不混乱,而且我们可以在一条数轴上显示很大范围的数。但我们仍未能显示所有的整数,那但并不是关键,只要我们可以在这些列出的数字中估计数值。不管怎样,当我们在谈论以兆计的数字时,几千就显得不是那么大了。
我们可以用 10 的幂代替所有整数来画数轴。在 10 的幂间作标记帮助估计 10 的倍数间的值
一个测定值经常在另一个值改变了很小量时而在较大范围内变化。
从低通滤波器输出的信号强度就是一个很好的例子。
业余无线发信机或接收机在它的输出端也许有个低通滤波器。这样的滤波器允许想要的信号通过。滤波器阻止高频信号,防止它们被发射出去。许多业余无线电发信机和收信机都包含内置的低通滤波器。作为预防措施,特别是老式的发信机,很多爱好者会使用一个外部滤波器。
一个滤波器效果的测试,就是给滤波器输入信号,接着测量出输出的信号。然后我们改变输入信号的频率,但保持相同的输入功率。我们测量输出强度,将其值在图中用点描出。这就是图4所表示的。
图4是滤波器输出信号强度的图像。横轴或称x轴,覆盖一个很小范围的频率。我们用普通的数标标注这根轴。纵轴或称y轴,覆盖了很大范围的输出强度,我们使用了压缩过的数标,就像图3中的数轴那样标注这个数轴。
频率标度从28兆赫(MHz)开始。低于这个频率,输入100W的功率,输出功率还是100W,滤波器对低于 30MHz的信号不起作用。在31.7MHz对,滤波器开始减少输出信号的强度。只有在高于34MHz时,滤波器将100W输入信号减少到50W输出。
在 40MHz时,对于100W的输入信号只得到不到1W 的输出信号。而当频率到达49MHz时,滤波器将 100W的输入信号减弱为大约0.0017W!
您能想象试图用线性数标来表示纵轴,画出图4吗?
普通线性坐标系难以直观展示这些数据,而对数(Logarithm)能将指数级变化“压缩”为线性关系,让分析更高效。(图所示:压缩数标转变至对数数标)
对数的定义
1、对数的基本概念
对数是数学中的一种运算,用于简化复杂的乘法和除法运算。在电子学中,对数常用于处理电路中的信号强度、频率等参数。对数的定义如下:
对数的基本公式如下
2、常用对数和自然对数
常用对数(Common Log):以10为底,记作log10 或简写为 log
自然对数(Natural Log):以数学常数 e≈2.71828 为底,记作 ln 。
- 换底公式
换底公式是将不同底数的对数转换为同一底数的对数,公式为:
这一公式在实际计算中非常有用,例如将自然对数转换为常用对数。
我们往期介绍了对数在电子学中的应用,例如在放大器设计中的增益用分贝来表示
这种表示方式简化了大数值的处理
在信号处理中对数变换在信号压缩和频谱分析中具有重要作用,例如,在图像处理中,对数变换可以增强图像的对比度
对数在电子学中有着广泛的应用,从信号强度的比较到频率的表示,再到电路中的功率计算,对数都发挥着重要作用。掌握对数的基本原理和计算方法,不仅能帮助我们更好地理解电子学中的各种现象,还能提高我们的计算效率。希望本文能帮助您在电子学的学习和工作中更加得心应手。
推荐在线计算工具链接:在线对数计算器在线对数计算器,计算2,e,10或者任意底数的对数,并展示对应底数的对数图表。https://www.lddgo.net/math/logarithm-calculator