14.找出所有子集的异或总和再求和(easy)

1.题目链接:

1863. 找出所有子集的异或总和再求和 - 力扣(LeetCode)1863. 找出所有子集的异或总和再求和 - 一个数组的 异或总和 定义为数组中所有元素按位 XOR 的结果;如果数组为 空 ,则异或总和为 0 。 * 例如,数组 [2,5,6] 的 异或总和 为 2 XOR 5 XOR 6 = 1 。给你一个数组 nums ,请你求出 nums 中每个 子集 的 异或总和 ,计算并返回这些值相加之 和 。注意:在本题中,元素 相同 的不同子集应 多次 计数。数组 a 是数组 b 的一个 子集 的前提条件是:从 b 删除几个(也可能不删除)元素能够得到 a 。 示例 1:输入:nums = [1,3]输出:6解释:[1,3] 共有 4 个子集:- 空子集的异或总和是 0 。- [1] 的异或总和为 1 。- [3] 的异或总和为 3 。- [1,3] 的异或总和为 1 XOR 3 = 2 。0 + 1 + 3 + 2 = 6示例 2:输入:nums = [5,1,6]输出:28解释:[5,1,6] 共有 8 个子集:- 空子集的异或总和是 0 。- [5] 的异或总和为 5 。- [1] 的异或总和为 1 。- [6] 的异或总和为 6 。- [5,1] 的异或总和为 5 XOR 1 = 4 。- [5,6] 的异或总和为 5 XOR 6 = 3 。- [1,6] 的异或总和为 1 XOR 6 = 7 。- [5,1,6] 的异或总和为 5 XOR 1 XOR 6 = 2 。0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28示例 3:输入:nums = [3,4,5,6,7,8]输出:480解释:每个子集的全部异或总和值之和为 480 。 提示: * 1 <= nums.length <= 12 * 1 <= nums[i] <= 20https://leetcode.cn/problems/sum-of-all-subset-xor-totals/submissions/629403252/2.题目描述:

一个数组的 异或总和 定义为数组中所有元素按位 XOR 的结果;如果数组为 空 ,则异或总和为 0 。​       例如,数组 [2,5,6] 的 异或总和 为 2 XOR 5 XOR 6 = 1 。​
    给你一个数组 nums ,请你求出 nums 中每个 子集 的 异或总和 ,计算并返回这些值相加之 和 。​     注意:在本题中,元素 相同 的不同子集应 多次 计数。​
    数组 a 是数组 b 的一个 子集 的前提条件是:从 b 删除几个(也可能不删除)元素能够得到 a 。​    示例 1:​
    输入:nums = [1,3]​
    输出:6​
    解释:[1,3] 共有 4 个子集:​




空子集的异或总和是 0 。​
[1] 的异或总和为 1 。​
[3] 的异或总和为 3 。​
[1,3] 的异或总和为 1 XOR 3 = 2 。​

    0 + 1 + 3 + 2 = 6​
  示例 2:​
    输入:nums = [5,1,6]​
    输出:28​
    解释:[5,1,6] 共有 8 个子集:​
         空子集的异或总和是 0 。​







[5] 的异或总和为 5 。​
[1] 的异或总和为 1 。​
[6] 的异或总和为 6 。​
[5,1] 的异或总和为 5 XOR 1 = 4 。​
[5,6] 的异或总和为 5 XOR 6 = 3 。​
[1,6] 的异或总和为 1 XOR 6 = 7 。​
[5,1,6] 的异或总和为 5 XOR 1 XOR 6 = 2 。​

     0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28​
  示例 3:​
     输入:nums = [3,4,5,6,7,8]​
     输出:480​
     解释:每个子集的全部异或总和值之和为 480 。​
  提示:
     1 <= nums.length <= 12​
     1 <= nums[i] <= 20​
3. 解法(递归):
算法思路:
所有子集可以解释为:每个元素选择在或不在一个集合中(因此,子集有 ​2n 个)。本题我们需要求出所有子集,将它们的异或和相加。因为异或操作满足交换律,所以我们可以定义一个变量,直接记录当前状态的异或和。使用递归保存当前集合的状态(异或和),选择将当前元素添加至当前状态与否,并依次递归数组中下一个元素。当递归到空元素时,表示所有元素都被考虑到,记录当前状态(将当前状态的异或和添加至答案中)。

例如集合中的元素为 [1, 2],则它的子集状态选择过程如下:​

1
2
3
4
5

                 []
         /      \
      []       [1]       //第一个元素选择与否
    /  \      /  \
 []  [2]  [1] [1, 2//第二个元素选择与否,每个状态到这一层时需要记录异或和

递归函数设计:void dfs(int val, int idx, vector<int>& nums)​

参数:val(当前状态的异或和),idx(当前需要处理的元素下标,处理过程:选择将其添加至当前状态或不进行操作);
返回值:无;
函数作用:选择对元素进行添加与否处理。

递归流程:
1. 递归结束条件:当前下标与数组长度相等,即已经越界,表示已经考虑到所有元素;
         a. 将当前异或和添加至答案中,并返回;
2. 考虑将当前元素添加至当前状态,当前状态更新为与当前元素值的异或和,然后递归下一个元素;

3. 考虑不选择当前元素,当前状态不变,直接递归下一个元素;

Java算法代码:

class Solution {

    int path;
    int sum;
    public int subsetXORSum(int[] nums) {
        dfs(nums,0);
        return sum;
    }
    public void dfs(int[] nums,int pos) {
        sum += path;
        for(int i = pos;i < nums.length; i++ ){
            path ^= nums[i];
            dfs(nums, i + 1);
            path ^= nums[i];//恢复现场
        }
    }
}

运行结果:

递归展开:

建议想想怎么画图,会画图,这个题解决一半(开始时候,笔者是直接计算出结果的),但是通过这里只是 ^num[i] ,再后面回溯的时候,将这部分去掉就好,省去了计算,同时更好的理解。

逻辑展开: 读者,可能发现了,笔者的逻辑展开越来越水,可以思考下为什么呢?

我认为很好理解,因为递归函数做的越来越多(也就是递归函数将细节藏了起来),我们再这道题中,提供了两个全局变量,以及相信递归函数可以将所有子集的异或综合再求和,将最终结果放到sum中。  再前面的题目中,实际上我们做的多(也就更容易看破递归的意图),导致,从逻辑展开可以很好的理解,从这节课之后,需要调整策略。 看重递归展开(它一直很重要)。

从上面的递归展开可以看到,我本应该展开更多次的函数,但是我没有展开所有,然后后面是借助逻辑展开的思考,来讲递归流程完毕(可以理解为部分递归展开理清细节,配合逻辑展开,得到完整结果)

这样的操作,可以减少展开的次数(减少繁琐,但是细节也足够了),通过逻辑展开,思考(全流程)

---------------------------------------------------------------------------------------------------------------------------------

记住,相信你的递归函数,它可以做到!

记住,不理解时候,去尝试手动展开!

记住,逻辑展开(你不可能对所有的题目都进行手动展开)!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值