1.题目链接:
一个数组的 异或总和 定义为数组中所有元素按位 XOR 的结果;如果数组为 空 ,则异或总和为 0 。 例如,数组 [2,5,6] 的 异或总和 为 2 XOR 5 XOR 6 = 1 。
给你一个数组 nums ,请你求出 nums 中每个 子集 的 异或总和 ,计算并返回这些值相加之 和 。 注意:在本题中,元素 相同 的不同子集应 多次 计数。
数组 a 是数组 b 的一个 子集 的前提条件是:从 b 删除几个(也可能不删除)元素能够得到 a 。• 示例 1:
输入:nums = [1,3]
输出:6
解释:[1,3] 共有 4 个子集:
• | 空子集的异或总和是 0 。 |
0 + 1 + 3 + 2 = 6
• 示例 2:
输入:nums = [5,1,6]
输出:28
解释:[5,1,6] 共有 8 个子集:
• 空子集的异或总和是 0 。
• | [5] 的异或总和为 5 。 |
0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28
• 示例 3:
输入:nums = [3,4,5,6,7,8]
输出:480
解释:每个子集的全部异或总和值之和为 480 。
• 提示:
1 <= nums.length <= 12
1 <= nums[i] <= 20
3. 解法(递归):
算法思路:
所有子集可以解释为:每个元素选择在或不在一个集合中(因此,子集有 2n 个)。本题我们需要求出所有子集,将它们的异或和相加。因为异或操作满足交换律,所以我们可以定义一个变量,直接记录当前状态的异或和。使用递归保存当前集合的状态(异或和),选择将当前元素添加至当前状态与否,并依次递归数组中下一个元素。当递归到空元素时,表示所有元素都被考虑到,记录当前状态(将当前状态的异或和添加至答案中)。
例如集合中的元素为 [1, 2],则它的子集状态选择过程如下:
1 | [] |
递归函数设计:void dfs(int val, int idx, vector<int>& nums)
参数:val(当前状态的异或和),idx(当前需要处理的元素下标,处理过程:选择将其添加至当前状态或不进行操作);
返回值:无;
函数作用:选择对元素进行添加与否处理。
递归流程:
1. 递归结束条件:当前下标与数组长度相等,即已经越界,表示已经考虑到所有元素;
a. 将当前异或和添加至答案中,并返回;
2. 考虑将当前元素添加至当前状态,当前状态更新为与当前元素值的异或和,然后递归下一个元素;
3. 考虑不选择当前元素,当前状态不变,直接递归下一个元素;
Java算法代码:
class Solution {
int path;
int sum;
public int subsetXORSum(int[] nums) {
dfs(nums,0);
return sum;
}
public void dfs(int[] nums,int pos) {
sum += path;
for(int i = pos;i < nums.length; i++ ){
path ^= nums[i];
dfs(nums, i + 1);
path ^= nums[i];//恢复现场
}
}
}
运行结果:
递归展开:
建议想想怎么画图,会画图,这个题解决一半(开始时候,笔者是直接计算出结果的),但是通过这里只是 ^num[i] ,再后面回溯的时候,将这部分去掉就好,省去了计算,同时更好的理解。
逻辑展开: 读者,可能发现了,笔者的逻辑展开越来越水,可以思考下为什么呢?
我认为很好理解,因为递归函数做的越来越多(也就是递归函数将细节藏了起来),我们再这道题中,提供了两个全局变量,以及相信递归函数可以将所有子集的异或综合再求和,将最终结果放到sum中。 再前面的题目中,实际上我们做的多(也就更容易看破递归的意图),导致,从逻辑展开可以很好的理解,从这节课之后,需要调整策略。 看重递归展开(它一直很重要)。
从上面的递归展开可以看到,我本应该展开更多次的函数,但是我没有展开所有,然后后面是借助逻辑展开的思考,来讲递归流程完毕(可以理解为部分递归展开理清细节,配合逻辑展开,得到完整结果)
这样的操作,可以减少展开的次数(减少繁琐,但是细节也足够了),通过逻辑展开,思考(全流程)
---------------------------------------------------------------------------------------------------------------------------------
记住,相信你的递归函数,它可以做到!
记住,不理解时候,去尝试手动展开!
记住,逻辑展开(你不可能对所有的题目都进行手动展开)!