2.1 矩阵的概念
元素全为实数的矩阵称为实矩阵
元素全为负数的矩阵称为复矩阵
只有一行(列)的矩阵称为行(列)矩阵
元素全为零的矩阵称为零矩阵
行数和列数都等于n的矩阵称为n阶矩阵或n阶方阵
主对角线元素全为1,其余元素全为0的矩阵称为单位矩阵,记作E或I
两个矩阵行数和列数对应相等的矩阵称为同型矩阵
2.2 矩阵的运算
2.2.1 矩阵的加(减)法
对应元素相加(减)所得到的矩阵(前提是同型矩阵)
满足的运算法则:
(1)交换律:
(2)结合律:
(3)
(4)
(5)移项规则:
2.2.2 矩阵的数乘
数乘:将数乘到矩阵的个元素上
矩阵提供因子:矩阵所有元素均有公因子,公因子外提一次
满足的运算法则:
(1)
(2)
(3)
2.2.3 矩阵的乘法和方阵的幂
1.矩阵的乘法
矩阵相乘前提条件:第一个矩阵的列数等于第二个矩阵的行数
结果矩阵的形状:结果矩阵行数等于第一个矩阵的行数,结果矩阵列数等于第二个矩阵的列数
宋氏七字口诀:中间相等取两头
注:1),AB有意义,BA不一定有意义(若AB=BA,则AB可交换)
2)AB表示A左乘B,B右乘A
3)AB=0推不出来A=0 or B=0
4)AB=AC,A0推不出来B=C
与E相乘:AE=A,EB=B
矩阵乘法满则的运算规则:
(1)结合律:(AB)C=A(BC)
(2)分配律:(A+B)C=AC+BC C(AB)=CA+CB
(3)k(AB)=(kA)B=A(kB)
2.方阵的幂