从零开始学数据分析之——《线性代数》第二章 矩阵

2.1 矩阵的概念

元素全为实数的矩阵称为实矩阵

 元素全为负数的矩阵称为复矩阵

只有一行(列)的矩阵称为行(列)矩阵

元素全为零的矩阵称为零矩阵

行数和列数都等于n的矩阵称为n阶矩阵或n阶方阵

主对角线元素全为1,其余元素全为0的矩阵称为单位矩阵,记作E或I

两个矩阵行数和列数对应相等的矩阵称为同型矩阵

2.2 矩阵的运算

2.2.1 矩阵的加(减)法

对应元素相加(减)所得到的矩阵(前提是同型矩阵)

满足的运算法则:

(1)交换律:A+B=B+A

(2)结合律:(A+B)+C=A+(B+C)

(3)A+0=A

(4)A+(-A)=0

(5)移项规则:A+B=C\Leftrightarrow A=C-B

2.2.2 矩阵的数乘

数乘:将数乘到矩阵的个元素上

矩阵提供因子:矩阵所有元素均有公因子,公因子外提一次

满足的运算法则:

(1)k(A+B)=kA+kB

(2)(k+l)A=kA+lA

(3)k(lA)=(kl)A

2.2.3 矩阵的乘法和方阵的幂

1.矩阵的乘法

矩阵相乘前提条件:第一个矩阵的列数等于第二个矩阵的行数

结果矩阵的形状:结果矩阵行数等于第一个矩阵的行数,结果矩阵列数等于第二个矩阵的列数

A_{m\times s}\times B_{s\times n}=C_{m\times n}

宋氏七字口诀:中间相等取两头

注:1)AB\neq BA,AB有意义,BA不一定有意义(若AB=BA,则AB可交换)

        2)AB表示A左乘B,B右乘A

        3)AB=0推不出来A=0 or B=0

        4)AB=AC,A\neq0推不出来B=C

与E相乘:AE=A,EB=B

矩阵乘法满则的运算规则:

(1)结合律:(AB)C=A(BC)

(2)分配律:(A+B)C=AC+BC   C(AB)=CA+CB

(3)k(AB)=(kA)B=A(kB)

2.方阵的幂

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值