从零开始学数据分析之——《线性代数》第二章 矩阵

2.1 矩阵的概念

元素全为实数的矩阵称为实矩阵

 元素全为负数的矩阵称为复矩阵

只有一行(列)的矩阵称为行(列)矩阵

元素全为零的矩阵称为零矩阵

行数和列数都等于n的矩阵称为n阶矩阵或n阶方阵

主对角线元素全为1,其余元素全为0的矩阵称为单位矩阵,记作E或I

两个矩阵行数和列数对应相等的矩阵称为同型矩阵

2.2 矩阵的运算

2.2.1 矩阵的加(减)法

对应元素相加(减)所得到的矩阵(前提是同型矩阵)

满足的运算法则:

(1)交换律:A+B=B+A

(2)结合律:(A+B)+C=A+(B+C)

(3)A+0=A

(4)A+(-A)=0

(5)移项规则:A+B=C\Leftrightarrow A=C-B

2.2.2 矩阵的数乘

数乘:将数乘到矩阵的个元素上

矩阵提供因子:矩阵所有元素均有公因子,公因子外提一次

满足的运算法则:

(1)k(A+B)=kA+kB

(2)(k+l)A=kA+lA

(3)k(lA)=(kl)A

2.2.3 矩阵的乘法和方阵的幂

1.矩阵的乘法

矩阵相乘前提条件:第一个矩阵的列数等于第二个矩阵的行数

结果矩阵的形状:结果矩阵行数等于第一个矩阵的行数,结果矩阵列数等于第二个矩阵的列数

A_{m\times s}\times B_{s\times n}=C_{m\times n}

宋氏七字口诀:中间相等取两头

注:1)AB\neq BA,AB有意义,BA不一定有意义(若AB=BA,则AB可交换)

        2)AB表示A左乘B,B右乘A

        3)AB=0推不出来A=0 or B=0

        4)AB=AC,A\neq0推不出来B=C

与E相乘:AE=A,EB=B

矩阵乘法满则的运算规则:

(1)结合律:(AB)C=A(BC)

(2)分配律:(A+B)C=AC+BC   C(AB)=CA+CB

(3)k(AB)=(kA)B=A(kB)

2.方阵的幂

A^k=A\cdot A\cdot \cdot \cdot \cdot \cdot A,A的k次幂,A^0=E

方阵的幂的性质:

         1)A^{k_1}A^{k_2}=A^{k_1+k_2}

        2)(A^{k_1})^{k_2}=A^{k_1k_2}

其中,k_1,k_2为非负整数

注意:(AB)^k\neq A^kB^k

           ABAB\neq AABB

           (A+B)^2\neq A^2+2AB+B^2

其中,A为方阵

2.2.4 矩阵的转置

将矩阵A的各行一次变为列后得到的矩阵,称为A的转置矩阵,即A_{m\times n}=A^T_{n\times m}

转置矩阵的性质:

 1)\left ( A^T \right )^T=A

2)(A+B)^T=A^T+B^T

3)(kA)^T=kA^T

4)(AB)^T=B^TA^T

2.3 几种特殊的矩阵

2.3.1 数量矩阵

主对角线上元素全部相等,其他与元素全为零的矩阵称为数量矩阵

2.3.2 对角形矩阵

主对角线上元素为任意数,而其他元素全为零的矩阵称为对角形矩阵

2.3.3 三角形矩阵

上三角形矩阵:主对角线上方的元素都是零的矩阵

下三角形矩阵:主对角线上方的元素都是零的矩阵

2.3.4 对称矩阵与反对称矩阵

对称矩阵

定义:以主对角线为轴,对应元素相等的矩阵

性质:A^T=A

两个同阶对称矩阵的和、差、数乘仍为对称矩阵,但其乘积一般不再是对称矩阵

定理:设A与B为两个同阶对称矩阵,则乘积AB仍为对称矩阵的充分必要条件是A与B可交换

反对称矩阵

定义:以主对角线为轴,对应元素成相反数的矩阵(注:反对称矩阵主对角线全为0,对称矩阵没有要求)

性质:A^T=-A

2.4 逆矩阵

注:不要把矩阵放在分母上

2.4.1 方阵的行列式与伴随矩阵

方阵的行列式:设n阶方阵A,用其所有元素按原来位置排列所称的n阶行列式称为方阵A的行列式。记作|A|或detA

性质:

1)\left | A^T \right |=\left | A \right |

2)|kA|=k^n|A|

3)|AB|=|A||B|,AB同阶

伴随矩阵:

只有方阵才有伴随矩阵

伴随矩阵的定义:

1)求所有元素的代数余子式

2)按行求的代数余子式按列放,构成的矩阵就是伴随矩阵,记作A^*

按行求按列放

定理:对任意方阵A,有AA^*=A^*A=|A|E

推论:若n阶方阵A满足,|A|\neq 0,|A^*|=|A|^{n-1}

2.4.2 逆矩阵

定义:设A是n阶方阵,若存在n阶方阵B,使得AB=BA=E,则称B是A的逆矩阵,记作A^-,并称A为可逆矩阵。

逆矩阵满足三个基本事实:

1)未必任何方阵都有逆矩阵

2)一个方阵若有逆矩阵,则逆矩阵唯一

3)若A可逆,则AA^-=A^-A=E

定义:若方阵A的行列式\left | A \right |\neq 0,则称A为非奇异(非退化或满秩)矩阵;否则,则称A为奇异(退化或降秩)矩阵。

定理:A可逆的充要条件\left | A \right |\neq 0A^{-1}=\frac{1}{\left | A \right |}A^{*}

推论:设A为n阶方阵,B为n阶方阵,使得AB=E或BA=E,则A可逆,且A^{-1}=B

求逆矩阵的方法:

1)伴随矩阵法

2)初等变换法

2.4.3 逆矩阵的性质

1)A可逆,A^{-1}可逆,(A^{-1})^{-1}=A

2)A、B均可逆,AB可逆,(AB)^{-1}=B^{-1}A^{-1}

3)A可逆,A^T可逆,(A^T)^{-1}=(A^{-1})^T,k\neq 0,(kA)^{-1}=\frac{1}{k}A^{-1}

4)A可逆,\left | A^{-1} \right |=\left | A \right |^{-1}

5)A可逆,A^*可逆,(A^*)^{-1}=\frac{1}{\left | A \right |}A

 

2.5 分块矩阵

2.5.1 分块矩阵的概念

灵活分,要求:横线竖线一气到头

标准形矩阵

从左上角开始的一串1(不断) ,标准形不一定是方阵

2.5.2 分块矩阵的运算

1)分块矩阵的加法

2)分块矩阵的数乘

3)分块矩阵的乘法

4)分块矩阵的转置:1.把子块视作普通元素求转置2.对每个子块求转置

2.6 矩阵的初等变换

2.6.1 矩阵的初等变换

1)交换矩阵的两行(列)

2)用数k(k\neq 0)乘以矩阵的某一行(列)

3)谋行(列)的l被加到另一行(列)上

定理:任何矩阵都可以经过初等变换化为标准形矩阵

定义:若矩阵A可经过初等变换为矩阵B,则称A与B等价,记作A\cong B

等价关系的性质

1)反身性:对任何矩阵A,都有A\cong A

2)对称性:若A\cong B,则B\cong A 

3)传递性:若A\cong BB\cong C,则A\cong C

推论:任何矩阵A都与标准形矩阵等价

2.6.2 初等方阵

定义:对单位矩阵E施行一次初等变换所得到的矩阵称为初等方阵

三种初等方阵:

1)E(i,j),\left | E(i,j) \right |=-1

2)E(i(k)),\left | E(i(k)) \right |=k(k\neq 0)

3)E(i,j(l)),\left | E(i,j(l)) \right |=1

初等方阵均可逆,其逆矩阵也是初等方阵,初等方阵的转置矩阵也是初等方阵

定理:设A是任意一个矩阵,则用第i种初等方阵左(右)乘A,相当于对A施行第i种初等行(列)变换(i=1,2,3)

推论:A、B等价\Leftrightarrow存在可逆矩阵P、Q,使得PAQ=B

2.6.3 矩阵可逆的两个充分必要条件

1)方阵A可逆的充分必要条件是A的标准形矩阵为E

2)方阵A可逆的充分必要条件是A可表示为若干初等方阵的乘积

2.6.4 初等变换法求逆矩阵

设A可逆,A^{-1}可逆,

A^{-1}=Q_1Q_2\cdot \cdot \cdot Q_t

Q_1Q_2\cdot \cdot \cdot Q_tA=E,用若干初等方阵左乘A,可以得到单位矩阵E

Q_1Q_2\cdot \cdot \cdot Q_tE=A^{-1},用与以上相同的初等方阵左乘E,可得到A^{-1}

以上方法称为:初等行变换法

注意:1)先第一列,再第二列,再第三列

           2)写整行,对整行进行操作

           3)第一行处理好后,不再主动参与变换

2.7 矩阵的秩

2.7.1 矩阵的秩

k阶子式:设A是mxn矩阵,从A中任取k行和k列,位于这些行、列相交处的元素按原来位置所构成的行列式称为A的一个k阶子式

0\leqslant r(A)=min{m,n}

非零子式的最高阶数就是矩阵的秩

零矩阵的秩为0

矩阵的秩r等于矩阵的行,则称行满秩矩阵

矩阵的秩r等于矩阵的列,则称行列秩矩阵

 A为方阵,A为满秩矩阵\LeftrightarrowA为可逆矩阵

定理:矩阵A的秩为r的充分必要条件是A有一个r阶子式不等于零,而所有r+1阶子式都等于零

阶梯形矩阵:

1)若有零行,零行在非零行的下边

2)自上而下,左起首非零元素左边零的个数随行数增加而严格增加

判断阶梯形矩阵的折线法:

横线可跨多个数,折线只跨一个数

行简化阶梯型:

1)非零行的首非零元是1

2)首非零元所在列的其余元素都是0

宋氏判断三步走:

1)折线判断阶梯形

2)圆圈画出首非零元

3)首非零元画竖的虚线,只有1其余0

阶梯形矩阵的秩等于其非零行的行数

初等(行列)变换不改变矩阵的秩

2.7.2 求矩阵的秩的方法

两种方法:

1)将矩阵A利用初等行、列变换化为标准矩阵D,则A的秩等于D中1的个数

2)将矩阵A利用初等行变换化为阶梯形矩阵B,则A的秩等于B中非零行的行数

2.7.3 矩阵的秩的性质

1)r(A)=r(A^T)

2)任何矩阵乘以可逆矩阵后,其秩不变

推论:设矩阵A_{m\times n},P_m可逆方阵,Q_n可逆方阵

r(A)=r(PA)=r(AQ)=r(PAQ)

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值