MySQL索引结构(面试题)、索引分类、语法

文章详细介绍了MySQL中的索引概念,包括索引的作用、索引结构如B+Tree和Hash索引的原理及其优缺点。特别强调了InnoDB存储引擎选择B+Tree的原因,以及聚集索引和二级索引的区别,同时提供了查询优化和索引创建的示例。
摘要由CSDN通过智能技术生成

2索引

2.1 索引概述

2.1.1 介绍

​ 索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足 特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构 上实现高级查找算法,这种数据结构就是索引。
在这里插入图片描述

2.2 索引结构

2.2.1 概述

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

在这里插入图片描述

上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持 情况。
在这里插入图片描述

2.2.2 二叉树

假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:
在这里插入图片描述
所以,如果选择二叉树作为索引结构,会存在以下缺点:

  • 顺序插入时,会形成一个链表,查询性能大大降低。

  • 大数据量情况下,层级较深,检索速度慢。

  • 在这里插入图片描述
    所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。

2.2.3 B-Tree
  • B-Tree,B树是一种多叉路平衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。
  • 以一颗最大度数(max-degree)为5 (5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:
    在这里插入图片描述
    树的度数指的是一个节点的子节点个数。

特点:

  • 5阶的B树,每一个节点最多存储4个key,对应5个指针。
  • 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
  • 在B树中,非叶子节点和叶子节点都会存放数据。
2.2.4 B+Tree

B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一 下其结构示意图:
在这里插入图片描述
我们可以看到,两部分:

  • 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据
  • 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。

插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 。然后观察一些数据插入过程中,节点的变化情况。
在这里插入图片描述
最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:

  • 所有的数据都会出现在叶子节点。

  • 叶子节点形成一个单向链表

  • 非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。

上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。

MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点 的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。

在这里插入图片描述

2.2.5 Hash

MySQL中除了支持B+Tree索引,还支持一种索引类型—Hash索引。

1). 结构 哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
在这里插入图片描述
2). 特点

  • A. Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,…)

  • B. 无法利用索引完成排序操作

  • C. 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索 引

    3). 存储引擎支持 在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。

面试题:

思考题: 为什么InnoDB存储引擎选择使用B+tree索引结构?

一 .相对于二叉树,层级更少,搜索效率高;

二.

  • 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
  • B+树中间节点没有卫星数据(索引元素所指向的数据记录),只有索引。这就意味着同样的大小的磁盘页可以容纳更多节点元素,在相同的数据量下,B+树更加“矮胖”,IO操作更少。
  • 其次,因为卫星数据的不同,导致查询过程也不同;B树的查找只需找到匹配元素即可,最好情况下查找到根节点,最坏情况下查找到叶子结点,所说性能很不稳定,而B+树每次必须查找到叶子结点,性能稳定
  • 在范围查询方面,B+树的优势更加明显
    B树的范围查找需要不断依赖中序遍历。首先二分查找到范围下限,在不断通过中序遍历,直到查找到范围的上限即可。整个过程比较耗时。
    而B+树的范围查找则简单了许多。首先通过二分查找,找到范围下限,然后同过叶子结点的链表顺序遍历,直至找到上限即可,整个过程简单许多,效率也比较高

C. 相对Hash索引,B+tree支持范围匹配及排序操作;

总结:B+树相比B树的优势:
  1.单一节点存储更多的元素,使得查询的IO次数更少;
  2.所有查询都要查找到叶子节点,查询性能稳定;
  3.所有叶子节点形成有序链表,便于范围查询。

2.3 索引分类

2.3.1 索引分类

​ 在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。
在这里插入图片描述

2.3.2 聚集索引&二级索引

而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:
在这里插入图片描述
下面 有例子解释
在这里插入图片描述

  • 聚集索引的叶子节点下挂的是这一行的数据
  • 二级索引的叶子节点下挂的是该字段值对应的主键值。

接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。
在这里插入图片描述
具体过程如下:

  • ①. 由于是根据name字段进行查询,所以先根据name='Arm’到name字段的二级索引中进行匹配查 找。但是在二级索引中只能查找到 Arm 对应的主键值 10。
  • ②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最 终找到10对应的行row。
  • ③. 最终拿到这一行的数据,直接返回即可。

回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取 数据的方式,就称之为回表查询。

聚集索引选取规则:

  • 如果存在主键,主键索引就是聚集索引。
  • 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
  • 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
思考题:

以下两条SQL语句,那个执行效率高? 为什么?
A. select * from user where id = 10 ;
B. select * from user where name = ‘Arm’ ;
备注: id为主键,name字段创建的有索引;
解答:

A 语句的执行性能要高于B 语句。 因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然 后再查询聚集索引,也就是需要进行回表查询

思考题:

InnoDB主键索引的B+tree高度为多高呢?
在这里插入图片描述

假设:一行数据大小为1k,一页中就可以存储16行这样的数据。(页的大小16K)
InnoDB的指针占用6个字节的空间,主键即使为bigint,占用字节数为8。

高度为2时:设key为n ,则指针数量为n+1。
n * 8 + (n + 1) * 6 = 16*1024 , 算出n约为 1170 
每一个指针指向一个页,一个页是16K,一行数据大小为1k。
 1171* 16 = 18736. 指针×行数 = 记录。
 也就是说,如果树的高度为2,则可以存储 18000 多条记录。
 
高度为3时:第一层根节点只有一个节点,一个节点由上面算出来是1171个指针,在第2层每一个节点那就也有1171个指针。
所以此时指针共有 1711*1171 再×16就是行数据。
 1171 * 1171 * 16 = 21939856
 也就是说,如果树的高度为3,则可以存储 2200w 左右的记录

2.4 索引语法

1). 创建索引

CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name ( 
index_col_name,... ) ;

2). 查看索引

SHOW INDEX FROM table_name ;

3). 删除索引
 DROP INDEX index_name ON table_name ;
案例演示:

先来创建一张表 tb_user,并且查询测试数据。

A. name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。
CREATE INDEX idx_user_name ON tb_user(name);

B. phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。
CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);

C. 为profession、age、status创建联合索引。
CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);

D. 为email建立合适的索引来提升查询效率。
CREATE INDEX idx_email ON tb_user(email);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值