模糊贝叶斯网建模步骤

贝叶斯网络通过部分已知的模糊节点来推导整体的过程并非最重要的,相反,其通过数学推导得出的与事实相同的结果才是贝叶斯网络的优势所在。

将贝叶斯网络应用在实际问题上的第一步就是利用其构建数学模型,而构建模型的方法也多种多样,下面列举几种不同的建模方式:

第一种方法就是广泛征求该事件或问题方面的专业人士,由专业人士做出模糊评价后定出该事件的树状结构,再为每一个变量的概率赋值。

第二种方法就不是人为的给出定义并建模了,是利用计算机程序来实现,在计算机中输入所有变量,由计算机计算出各个变量的概率并构建网络拓扑结构。

第三种方法既不是单纯由人主观构建,也不是由计算机客观构建,而是各取所长,首先由专业人士模糊打分来构造树状结构,更贴近实际情况,而对每个变量赋值则交由计算机完成,更加精确。


选用由人机结合构造贝叶斯网络的方法,此方法的建模步骤如下:

1)构建变量网络并为变量赋值

        贝叶斯网络代表一个整体事件,而其中众多变量则表示事件中各个不同的致因。每一个变量都有不同状态,例如交通信号灯就有绿灯通行和红灯禁行状态。而在根据不同变量的不同状态来为其赋值之前,我们需要由多位该事件领域的专家为该网络给出所有关键性变量,之后再进行赋值,例如交通信号灯的红灯和绿灯就可以由 0,1 来代替。

        而事件中的所有变量也并非完全相同,主要分为目标节点、证据节点和中间节点,这些变量共同组建了贝叶斯网络系统。

(1)目标节点,将影响整体事件的因素细分后对应的变量,是分类最细致的节点,处在树状结构的末梢,这些变量是事件发生后最主要的致因;

(2)证据节点,也就是树状结构的根节点,在树状结构的最底端,是对事件致因最宽泛的分类,该类节点的赋值一般比较容易获得,该节点是进行贝叶斯推导及求得叶节点概率的依据;

(3)中间节点,起到联系以上两类节点的作用。

2)构建模糊贝叶斯树状结构  

    采用的是树状拓扑,该拓扑结构能够最直观的展示安全各个影响因素间的关联,通过专业人士的模糊评价就能够构建出安全树状拓扑。

3)确定各变量概率

这一步是建模的关键步骤,将对最终结果产生很大影响,若缺乏基础数据可由专家打分完成,但难免主观因素主导;若基础数据完善可用概率论知识进行计算获得准确数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能教学实践

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值