CF1992题解
Codeforces Round 957 (Div. 3) VP题解,E题打的时候脑抽没想到
A
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;
void work()
{
int a,b,c;
priority_queue<int,vector<int>,greater<int> > q;
cin>>a>>b>>c;
q.push(a);q.push(b);q.push(c);
rep(i,0,4)
{
int x=q.top();q.pop();
x++;
q.push(x);
}
ll ans=1;
rep(i,0,2)
{
ans*=q.top();q.pop();
}
cout<<ans<<'\n';
}
int main()
{
cin.tie(0);
cin.sync_with_stdio(0);
int t=1;
cin>>t;
while(t--)
work();
return 0;
}
B
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;
void work()
{
int n,k;
cin>>k>>n;
vi a(n);
rep(i,0,n)
cin>>a[i];
int mx=-1,mi=-1;
rep(i,0,n)
if(mx<a[i]) mx=a[i],mi=i;
ll ans=0;
rep(i,0,n)
if(mi!=i) ans+=2*a[i]-1;
cout<<ans<<'\n';
}
int main()
{
cin.tie(0);
cin.sync_with_stdio(0);
int t=1;
cin>>t;
while(t--)
work();
return 0;
}
C
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;
void work()
{
int n,k,m;
cin>>n>>m>>k;
vi a(n+1);
rep(i,1,n)
a[i]=i;
reverse(a.begin()+1,a.end());
reverse(a.begin()+n-m+1,a.end());
rep(i,1,n)
cout<<a[i]<<' ';
cout<<'\n';
}
int main()
{
cin.tie(0);
cin.sync_with_stdio(0);
int t=1;
cin>>t;
while(t--)
work();
return 0;
}
D
题目大意:
一个一维的地图上面有陆地,水域,鳄鱼三种格子
在陆地上可以跳跃不超过 m m m个格子
在水域中只能向右边相邻的格子移一格,任何时候都不能到鳄鱼格子中
至多能经过 k k k个水域
问能否从 0 0 0号格子走到 n + 1 n+1 n+1号格子
1 ≤ m ≤ 10 , 1 ≤ n ≤ 1 e 5 1 \le m \le 10,1 \le n \le 1e5 1≤m≤10,1≤n≤1e5
思路:
一开始乱写dfs,没有保证经过的水域最少,导致答案错误
后面发现 d p dp dp简单又好写,直接设 d p [ i ] dp[i] dp[i]为到达 i i i个格子所需经过的最少的水域格子
因为 m m m非常小我们甚至不用预处理离每个格子最近的那个水域格子
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;
int n,m,k;
const int inf=0x3f3f3f3f;
void work()
{
cin>>n>>m>>k;
string s;
s.resize(n+2);
vi dp(n+2);
s[0]='L';
rep(i,1,n)
cin>>s[i];
s[n+1]='L';
dp[0]=0;
rep(i,1,n+1)
{
dp[i]=inf;
rep(j,max(0,i-m),i-1)
if(s[j]=='L') dp[i]=min(dp[i],dp[j]);
if(s[i-1]=='W') dp[i]=min(dp[i],dp[i-1]+1);
}
if(dp[n+1]<=k) cout<<"Yes\n";
else cout<<"No\n";
}
int main()
{
cin.tie(0);
cin.sync_with_stdio(0);
int t=1;
cin>>t;
while(t--)
work();
return 0;
}
E
题目大意:
给定 n n n
求满足等式 n a − b = s na-b=s na−b=s的有序数对 ( a , b ) (a,b) (a,b)的个数,并将它们输出
其中 s s s的为 a + a + a … … + a a+a+a……+a a+a+a……+a( n n n个 a a a相连,删去最后 b b b位所得)
限定 1 ≤ n ≤ 100 , 1 ≤ a ≤ 10000 , 1 ≤ b ≤ m i n ( 10000 , n a ) 1 \le n \le 100,1 \le a \le 10000,1 \le b \le min(10000,na) 1≤n≤100,1≤a≤10000,1≤b≤min(10000,na)
思路:
写这道题的时候太唐了,算法竞赛跟数学竞赛思维很大一个不同就是
我们一般考虑枚举什么,维护什么
V P VP VP的时候就这题没写出来,过了几天补题的时候一眼就秒了
很明显 n ∗ a − b n*a-b n∗a−b最大也只有8位数,那么我们可以直接枚举 s s s的位数 t t t,这样就有了另一个等式
l e n ( n ) a − b = t len(n)a-b=t len(n)a−b=t, t t t从1到8枚举, n n n已知,解一个二元一次方程即可
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;
const int maxa=10000;
int pw[]={1,10,100,1000,10000};
void work()
{
int n,nlen=0,tmp;
vector<pii> ans;
cin>>n;
if(n==1)
{
rep(a,1,10000)
{
int b=a-1;
if(1<=a&a<=maxa&&1<=b&&b<=min(a*n,maxa)) ans.push_back({a,b});
}
cout<<sz(ans)<<'\n';
trav(i,ans)
cout<<i.first<<' '<<i.second<<'\n';return;
}
tmp=n;
while(tmp) {tmp/=10;nlen++;}
rep(t,1,8)
{
//a-b=t,na-b=nnnnn
ll sum=0;
rep(j,1,t/nlen) sum=sum*pw[nlen]+n;
if(t%nlen) sum=sum*pw[t%nlen]+n/pw[nlen-t%nlen];
if((sum-t)%(n-nlen)==0)
{
int a=(sum-t)/(n-nlen);
int b=n*a-sum;
if(1<=a&a<=maxa&&1<=b&&b<=min(a*n,maxa)) ans.push_back({a,b});
}
}
cout<<sz(ans)<<'\n';
trav(i,ans)
cout<<i.first<<' '<<i.second<<'\n';
}
int main()
{
cin.tie(0);
cin.sync_with_stdio(0);
int t=1;
cin>>t;
while(t--)
work();
return 0;
}
F
给定一个长度为 n n n的序列 a a a,给定 x x x
定义子段 [ l , r ] [l,r] [l,r]为 b a d bad bad,当且仅当这一段中不存在任何子序列,使得这个子序列的乘积等于 x x x
现在要将序列 a a a划分为 k k k段,使得每一段都是 b a d bad bad段,且 k k k最小
1 ≤ n , x ≤ 1 e 5 , a i ≠ x 1 \le n,x\le 1e5,a_i \ne x 1≤n,x≤1e5,ai=x
思路:想办法维护每一段是否为 b a d bad bad段
发现不是 x x x的因子的数对问题无贡献,只记录是 x x x的因子的数 k i k_i ki
当新加入一个数,且是 x x x的因子时,与可能因子相乘
1. k i ∗ k j > x k_i*k_j>x ki∗kj>x,舍弃
2. k i ∗ k j < x k_i*k_j<x ki∗kj<x, k i ∗ k j k_i*k_j ki∗kj可能是一个因子,加入集合中,相等则另开一段,将当前集合清空
我们开一个 s e t set set可以维护
注意在使用迭代器访问map/set这种有序容器的时候,不要对它执行插入操作
因此这里写了一个 b a c bac bac数组
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;
void work()
{
int n,x;
cin>>n>>x;
vi a(n+1);
rep(i,1,n)
cin>>a[i];
int ans=1;
set<int> S;
rep(i,1,n)
{
//cout<<"hhh\n";
if(x%a[i]!=0||a[i]==1) continue;
bool flag=false;
vi bac;
trav(j,S)
{
ll insetion=a[i]*j;
//printf("a[i]=%d,j=%d\n",a[i],j);
if(insetion==x) {flag=true;break;}
if(insetion<x) bac.push_back(insetion);
}
if(flag) {ans++;S.clear();i--;continue;}
S.insert(a[i]);
trav(i,bac)
S.insert(i);
}
cout<<ans<<'\n';
}
int main()
{
cin.tie(0);
cin.sync_with_stdio(0);
int t=1;
cin>>t;
while(t--)
work();
return 0;
}
G
G题组合数学计数题,明确每一维要枚举什么手推就可以了