CF1992题解个人VP题解

CF1992题解

Codeforces Round 957 (Div. 3) VP题解,E题打的时候脑抽没想到

A

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;

void work()
{
    int a,b,c;
    priority_queue<int,vector<int>,greater<int> > q;
    cin>>a>>b>>c;
    q.push(a);q.push(b);q.push(c);
    rep(i,0,4)
    {
        int x=q.top();q.pop();
        x++;
        q.push(x);
    }
    ll ans=1;
    rep(i,0,2)
    {
        ans*=q.top();q.pop();
    }
    cout<<ans<<'\n';
}
int main()
{
	cin.tie(0);
	cin.sync_with_stdio(0);
	int t=1;
	cin>>t;
	while(t--)
		work();
	return 0;
}

B

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;

void work()
{
    int n,k;
    cin>>k>>n;
    vi a(n);
    rep(i,0,n)
        cin>>a[i];
    int mx=-1,mi=-1;
    rep(i,0,n)
        if(mx<a[i]) mx=a[i],mi=i;
    ll ans=0;
    rep(i,0,n)
        if(mi!=i) ans+=2*a[i]-1;
    cout<<ans<<'\n';
}
int main()
{
	cin.tie(0);
	cin.sync_with_stdio(0);
	int t=1;
	cin>>t;
	while(t--)
		work();
	return 0;
}

C

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;

void work()
{
    int n,k,m;
    cin>>n>>m>>k;
    vi a(n+1);
    rep(i,1,n)
        a[i]=i;
    reverse(a.begin()+1,a.end());
    reverse(a.begin()+n-m+1,a.end());
    rep(i,1,n)
        cout<<a[i]<<' ';
    cout<<'\n';
}
int main()
{
	cin.tie(0);
	cin.sync_with_stdio(0);
	int t=1;
	cin>>t;
	while(t--)
		work();
	return 0;
}

D

题目大意:

一个一维的地图上面有陆地,水域,鳄鱼三种格子

在陆地上可以跳跃不超过 m m m个格子

在水域中只能向右边相邻的格子移一格,任何时候都不能到鳄鱼格子中

至多能经过 k k k个水域

问能否从 0 0 0号格子走到 n + 1 n+1 n+1号格子

1 ≤ m ≤ 10 , 1 ≤ n ≤ 1 e 5 1 \le m \le 10,1 \le n \le 1e5 1m10,1n1e5

思路:

一开始乱写dfs,没有保证经过的水域最少,导致答案错误

后面发现 d p dp dp简单又好写,直接设 d p [ i ] dp[i] dp[i]为到达 i i i个格子所需经过的最少的水域格子

因为 m m m非常小我们甚至不用预处理离每个格子最近的那个水域格子

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;
int n,m,k;

const int inf=0x3f3f3f3f;
void work()
{
    cin>>n>>m>>k;
    string s;
    s.resize(n+2);
    vi dp(n+2);
    s[0]='L';
    rep(i,1,n)
        cin>>s[i];
    s[n+1]='L';
    dp[0]=0;
    rep(i,1,n+1)
    {
        dp[i]=inf;
        rep(j,max(0,i-m),i-1)
            if(s[j]=='L') dp[i]=min(dp[i],dp[j]);
        if(s[i-1]=='W') dp[i]=min(dp[i],dp[i-1]+1);
    }
    if(dp[n+1]<=k) cout<<"Yes\n";
    else cout<<"No\n";
}
int main()
{
	cin.tie(0);
	cin.sync_with_stdio(0);
	int t=1;
	cin>>t;
	while(t--)
		work();
	return 0;
}

E

题目大意:

给定 n n n

求满足等式 n a − b = s na-b=s nab=s的有序数对 ( a , b ) (a,b) (a,b)的个数,并将它们输出

其中 s s s的为 a + a + a … … + a a+a+a……+a a+a+a……+a n n n a a a相连,删去最后 b b b位所得)

限定 1 ≤ n ≤ 100 , 1 ≤ a ≤ 10000 , 1 ≤ b ≤ m i n ( 10000 , n a ) 1 \le n \le 100,1 \le a \le 10000,1 \le b \le min(10000,na) 1n100,1a10000,1bmin(10000,na)

思路:

写这道题的时候太唐了,算法竞赛跟数学竞赛思维很大一个不同就是

我们一般考虑枚举什么,维护什么

V P VP VP的时候就这题没写出来,过了几天补题的时候一眼就秒了

很明显 n ∗ a − b n*a-b nab最大也只有8位数,那么我们可以直接枚举 s s s的位数 t t t,这样就有了另一个等式

l e n ( n ) a − b = t len(n)a-b=t len(n)ab=t t t t从1到8枚举, n n n已知,解一个二元一次方程即可

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;
const int maxa=10000;

int pw[]={1,10,100,1000,10000};
void work()
{
    int n,nlen=0,tmp;
    vector<pii> ans;

    cin>>n;
    if(n==1)
    {
        rep(a,1,10000)
        {
            int b=a-1;
            if(1<=a&a<=maxa&&1<=b&&b<=min(a*n,maxa)) ans.push_back({a,b});
        }
        cout<<sz(ans)<<'\n';
        trav(i,ans)
        cout<<i.first<<' '<<i.second<<'\n';return;
    }
    tmp=n;
    while(tmp) {tmp/=10;nlen++;}

    rep(t,1,8)
    {
        //a-b=t,na-b=nnnnn
        ll sum=0;

        rep(j,1,t/nlen) sum=sum*pw[nlen]+n;
        if(t%nlen) sum=sum*pw[t%nlen]+n/pw[nlen-t%nlen];

        if((sum-t)%(n-nlen)==0)
        {
            int a=(sum-t)/(n-nlen);
            int b=n*a-sum;
            if(1<=a&a<=maxa&&1<=b&&b<=min(a*n,maxa)) ans.push_back({a,b});
        }
    }

    cout<<sz(ans)<<'\n';
    trav(i,ans)
        cout<<i.first<<' '<<i.second<<'\n';

}
int main()
{
	cin.tie(0);
	cin.sync_with_stdio(0);
	int t=1;
	cin>>t;
	while(t--)
		work();
	return 0;
}

F

给定一个长度为 n n n的序列 a a a,给定 x x x

定义子段 [ l , r ] [l,r] [l,r] b a d bad bad,当且仅当这一段中不存在任何子序列,使得这个子序列的乘积等于 x x x

现在要将序列 a a a划分为 k k k段,使得每一段都是 b a d bad bad段,且 k k k最小

1 ≤ n , x ≤ 1 e 5 , a i ≠ x 1 \le n,x\le 1e5,a_i \ne x 1n,x1e5,ai=x

思路:想办法维护每一段是否为 b a d bad bad

发现不是 x x x的因子的数对问题无贡献,只记录是 x x x的因子的数 k i k_i ki

当新加入一个数,且是 x x x的因子时,与可能因子相乘

1. k i ∗ k j > x k_i*k_j>x kikj>x,舍弃

2. k i ∗ k j < x k_i*k_j<x kikj<x k i ∗ k j k_i*k_j kikj可能是一个因子,加入集合中,相等则另开一段,将当前集合清空

我们开一个 s e t set set可以维护

注意在使用迭代器访问map/set这种有序容器的时候,不要对它执行插入操作

因此这里写了一个 b a c bac bac数组

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=(b);++i)
#define trav(a,x) for(auto&a : x)
#define all(x) x.begin(),x.end()
#define sz(x) (int) x.size()
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef long long ll;

void work()
{
    int n,x;
    cin>>n>>x;
    vi a(n+1);
    rep(i,1,n)
        cin>>a[i];
    int ans=1;
    set<int> S;
    rep(i,1,n)
    {
        //cout<<"hhh\n";
        if(x%a[i]!=0||a[i]==1) continue;
        bool flag=false;
        vi bac;
        trav(j,S)
        {
            ll insetion=a[i]*j;
            //printf("a[i]=%d,j=%d\n",a[i],j);
            if(insetion==x) {flag=true;break;}
            if(insetion<x) bac.push_back(insetion);
        }
        if(flag) {ans++;S.clear();i--;continue;}
        S.insert(a[i]);
        trav(i,bac)
            S.insert(i);
    }
    cout<<ans<<'\n';
}
int main()
{
	cin.tie(0);
	cin.sync_with_stdio(0);
	int t=1;
	cin>>t;
	while(t--)
		work();
	return 0;
}

G

G题组合数学计数题,明确每一维要枚举什么手推就可以了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值