深度学习调参技巧
文章平均质量分 86
AI程序媛
深度学习/中科院
展开
-
提高pytorch速度的几种方法
如何提升PyTorch“炼丹”速度?最近,有一位名叫Lorenz Kuhn的小哥,分享了他在炼丹过程中总结的17种投入最低、效果最好的提升训练速度的方法,而且基本上都可以直接在PyTorch中进行更改,无需引入额外的库。Faster Deep Learning Training with Pytorch - a 2021 Guide不过需要注意的是,这些方法都是假设是在GPU上训练模型。这一分享在Reddit上得到了600的热度。接下来,我们便从提速高低开始,依次对这些方..原创 2021-01-15 10:58:29 · 1516 阅读 · 0 评论 -
神经网络训练tricks总结
由于神经网络可以随意设计,先验假设较少,参数多,超参数更多,那模型的自由度就非常高了,精心设计对于新手就变得较难了。这里简单介绍一些CNN的trickCNN的使用神经网络是特征学习方法,其能力取决隐层,更多的连接意味着参数爆炸的增长,模型复杂直接导致很多问题。比如严重过拟合,过高的计算复杂度。CNN其优越的性能十分值得使用,参数数量只和卷积核大小,数量有关,保证隐含节点数量(...转载 2020-04-26 16:11:15 · 575 阅读 · 0 评论 -
深度学习调参小技巧
Adam那么棒,为什么还对SGD念念不忘转载 2019-05-30 10:36:06 · 372 阅读 · 0 评论 -
Karpathy的深度学习训练技巧
1. 梳理数据训练神经网络的第一步是不要碰代码,先彻底检查自己的数据。这一步非常关键。我喜欢用大量时间浏览数千个样本,理解它们的分布,寻找其中的模式。有一次,我发现数据中包含重复的样本,还有一次我发现了损坏的图像/标签。我会查找数据不均衡和偏差。我通常还会注意自己的数据分类过程,它会揭示我们最终探索的架构。比如,只需要局部特征就够了还是需要全局语境?标签噪声多大?2. 配置端到端训练/评估...转载 2019-05-30 11:33:42 · 603 阅读 · 0 评论 -
Batch Normalization 学习笔记
顾名思义,batch normalization嘛,即“批规范化”,主要作用是为了防止“梯度弥散”。关于梯度弥散,举个很简单的例子,。1. BN原理B有人可能会说,BN不就是在网络中间层数据做一个归一化处理嘛,这么简单的想法,为什么之前没人用呢?然而其实实现起来并不是那么简单的。其实如果仅仅对网络某一层A的输出数据做归一化,然后送入网络下一层B,这样是会影响到本层网络A所学习到的特征的。打...原创 2019-05-31 17:04:02 · 364 阅读 · 0 评论