TensorFlow2.0教程-使用keras训练模型

1.一般的模型构造、训练、测试流程

import tensorflow
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras import layers


inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True)

model.compile(optimizer=keras.optimizers.RMSprop(),
             loss=keras.losses.SparseCategoricalCrossentropy(),
             metrics=[keras.metrics.SparseCategoricalAccuracy()]) #评价函数

# 载入数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]

# 训练模型
history = model.fit(x_train, y_train, batch_size=64, epochs=3,validation_data=(x_val, y_val))

#参数说明 参考https://blog.csdn.net/a1111h/article/details/82148497
print('history:')
print(history.history)

result = model.evaluate(x_test, y_test, batch_size=128)
print('evaluate:')
print(result)
pred = model.predict(x_test[:2])
print('predict:')
index=tf.math.argmax(pred[0]).numpy()
print(index)

2.自定义损失和指标
自定义指标只需继承Metric类, 并重写一下函数

init(self),初始化。

update_state(self,y_true,y_pred,sample_weight = None),它使用目标y_true和模型预测y_pred来更新状态变量。

result(self),它使用状态变量来计算最终结果。

reset_states(self),重新初始化度量的状态。

# 这是一个简单的示例,显示如何实现CatgoricalTruePositives指标,该指标计算正确分类为属于给定类的样本数量

import tensorflow
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras import layers

inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True)



# 载入数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]

class CatgoricalTruePostives(keras.metrics.Metric):
    def __init__(self, name='binary_true_postives', **kwargs):
        super(CatgoricalTruePostives, self).__init__(name=name, **kwargs)
        self.true_postives = self.add_weight(name='tp', initializer='zeros')

    def update_state(self, y_true, y_pred, sample_weight=None):
        y_pred = tf.argmax(y_pred)
        y_true = tf.equal(tf.cast(y_pred, tf.int32), tf.cast(y_true, tf.int32))

        y_true = tf.cast(y_true, tf.float32)

        if sample_weight is not None:
            sample_weight = tf.cast(sample_weight, tf.float32)
            y_true = tf.multiply(sample_weight, y_true)

        return self.true_postives.assign_add(tf.reduce_sum(y_true))

    def result(self):
        return tf.identity(self.true_postives)

    def reset_states(self):
        self.true_postives.assign(0.)


model.compile(optimizer=keras.optimizers.RMSprop(1e-3),
             loss=keras.losses.SparseCategoricalCrossentropy(),
             metrics=[CatgoricalTruePostives()])

model.fit(x_train, y_train,batch_size=64, epochs=3)
# 以定义网络层的方式添加网络loss
import tensorflow
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras import layers

inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True)



# 载入数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]
class MetricLoggingLayer(layers.Layer):
    def call(self, inputs):
        self.add_metric(keras.backend.std(inputs),
                       name='std_of_activation',
                       aggregation='mean')

        return inputs

inputs = keras.Input(shape=(784,), name='mnist_input')
h1 = layers.Dense(64, activation='relu')(inputs)
h1 = MetricLoggingLayer()(h1)
h1 = layers.Dense(64, activation='relu')(h1)
outputs = layers.Dense(10, activation='softmax')(h1)
model = keras.Model(inputs, outputs)
# keras.utils.plot_model(model, 'net001.png', show_shapes=True)

model.compile(optimizer=keras.optimizers.RMSprop(),
             loss=keras.losses.SparseCategoricalCrossentropy(),
             metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(x_train, y_train, batch_size=32, epochs=1)



3.使用tf.data构造数据
#tf.data.Dataset 用法 https://www.tensorflow.org/api_docs/python/tf/data/Dataset

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
#从列表里读取数据

train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)
shuffle(
buffer_size,
seed=None,
reshuffle_each_iteration=None
)

随机重新排列此数据集的元素。

该数据集用buffer_size元素填充缓冲区,然后从该缓冲区中随机采样元素,用新元素替换所选元素。为了实现完美的改组,需要缓冲区大小大于或等于数据集的完整大小。

例如,如果您的数据集包含10,000个元素但buffer_size设置为1,000,则shuffle最初将仅从缓冲区的前1,000个元素中选择一个随机元素。选择一个元素后,其缓冲区中的空间将被下一个(即1,001个)元素替换,并保留1,000个元素的缓冲区。

buffer_size:一个tf.int64标量tf.Tensor,表示此数据集中要从中采样新数据集的元素数。


import tensorflow
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras import layers


(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]


def get_compiled_model():
    inputs = keras.Input(shape=(784,), name='mnist_input')
    h1 = layers.Dense(64, activation='relu')(inputs)
    h2 = layers.Dense(64, activation='relu')(h1)
    outputs = layers.Dense(10, activation='softmax')(h2)
    model = keras.Model(inputs, outputs)
    model.compile(optimizer=keras.optimizers.RMSprop(),
                 loss=keras.losses.SparseCategoricalCrossentropy(),
                 metrics=[keras.metrics.SparseCategoricalAccuracy()])
    return model
model = get_compiled_model()
#tf.data.Dataset 用法 https://www.tensorflow.org/api_docs/python/tf/data/Dataset
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)


val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(64)

# model.fit(train_dataset, epochs=3)
# steps_per_epoch 每个epoch只训练几步
# validation_steps 每次验证,验证几步
model.fit(train_dataset, epochs=3, steps_per_epoch=100,
         validation_data=val_dataset, validation_steps=3)

4.样本权重和类权重
“样本权重”数组是一个数字数组,用于指定批处理中每个样本在计算总损失时应具有多少权重。 它通常用于不平衡的分类问题(这个想法是为了给予很少见的类更多的权重)。 当使用的权重是1和0时,该数组可以用作损失函数的掩码(完全丢弃某些样本对总损失的贡献)。

“类权重”dict是同一概念的更具体的实例:它将类索引映射到应该用于属于该类的样本的样本权重。 例如,如果类“0”比数据中的类“1”少两倍,则可以使用class_weight = {0:1.,1:0.5}。

完整代码

import tensorflow
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras import layers


(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]


def get_compiled_model():
    inputs = keras.Input(shape=(784,), name='mnist_input')
    h1 = layers.Dense(64, activation='relu')(inputs)
    h2 = layers.Dense(64, activation='relu')(h1)
    outputs = layers.Dense(10, activation='softmax')(h2)
    model = keras.Model(inputs, outputs)
    model.compile(optimizer=keras.optimizers.RMSprop(),
                 loss=keras.losses.SparseCategoricalCrossentropy(),
                 metrics=[keras.metrics.SparseCategoricalAccuracy()])
    return model
import numpy as np
# 类权重
model = get_compiled_model()
class_weight = {i:1.0 for i in range(10)}
class_weight[5] = 2.0
print(class_weight)
model.fit(x_train, y_train,
         class_weight=class_weight,
         batch_size=64,
         epochs=4)
# 样本权重
model = get_compiled_model()
sample_weight = np.ones(shape=(len(y_train),))
sample_weight[y_train == 5] = 2.0
model.fit(x_train, y_train,
         sample_weight=sample_weight,
         batch_size=64,
         epochs=4)
# tf.data数据
model = get_compiled_model()

sample_weight = np.ones(shape=(len(y_train),))
sample_weight[y_train == 5] = 2.0

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train,
                                                    sample_weight))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)

val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(64)

model.fit(train_dataset, epochs=3, )

5.多输入多输出模型
image_input = keras.Input(shape=(32, 32, 3), name=‘img_input’)
timeseries_input = keras.Input(shape=(None, 10), name=‘ts_input’)

x1 = layers.Conv2D(3, 3)(image_input)
x1 = layers.GlobalMaxPooling2D()(x1)

x2 = layers.Conv1D(3, 3)(timeseries_input)
x2 = layers.GlobalMaxPooling1D()(x2)

x = layers.concatenate([x1, x2])

score_output = layers.Dense(1, name=‘score_output’)(x)
class_output = layers.Dense(5, activation=‘softmax’, name=‘class_output’)(x)

model = keras.Model(inputs=[image_input, timeseries_input],
outputs=[score_output, class_output])
keras.utils.plot_model(model, ‘multi_input_output_model.png’
, show_shapes=True)

可以为模型指定不同的loss和metrics

model.compile(
optimizer=keras.optimizers.RMSprop(1e-3),
loss=[keras.losses.MeanSquaredError(),
keras.losses.CategoricalCrossentropy()])

还可以指定loss的权重

model.compile(
optimizer=keras.optimizers.RMSprop(1e-3),
loss={‘score_output’: keras.losses.MeanSquaredError(),
‘class_output’: keras.losses.CategoricalCrossentropy()},
metrics={‘score_output’: [keras.metrics.MeanAbsolutePercentageError(),
keras.metrics.MeanAbsoluteError()],
‘class_output’: [keras.metrics.CategoricalAccuracy()]},
loss_weight={‘score_output’: 2., ‘class_output’: 1.})

可以把不需要传播的loss置0

model.compile(
optimizer=keras.optimizers.RMSprop(1e-3),
loss=[None, keras.losses.CategoricalCrossentropy()])

Or dict loss version

model.compile(
optimizer=keras.optimizers.RMSprop(1e-3),
loss={‘class_output’: keras.losses.CategoricalCrossentropy()})
6.使用回调
Keras中的回调是在训练期间(在epoch开始时,batch结束时,epoch结束时等)在不同点调用的对象,可用于实现以下行为:

在培训期间的不同时间点进行验证(超出内置的每个时期验证)
定期检查模型或超过某个精度阈值
在训练似乎平稳时改变模型的学习率
在训练似乎平稳时对顶层进行微调
在培训结束或超出某个性能阈值时发送电子邮件或即时消息通知等等。
可使用的内置回调有

ModelCheckpoint:定期保存模型。
EarlyStopping:当训练不再改进验证指标时停止培训。
TensorBoard:定期编写可在TensorBoard中显示的模型日志(更多细节见“可视化”)。
CSVLogger:将丢失和指标数据流式传输到CSV文件。
等等

import tensorflow
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras import layers


(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]


def get_compiled_model():
    inputs = keras.Input(shape=(784,), name='mnist_input')
    h1 = layers.Dense(64, activation='relu')(inputs)
    h2 = layers.Dense(64, activation='relu')(h1)
    outputs = layers.Dense(10, activation='softmax')(h2)
    model = keras.Model(inputs, outputs)
    model.compile(optimizer=keras.optimizers.RMSprop(),
                 loss=keras.losses.SparseCategoricalCrossentropy(),
                 metrics=[keras.metrics.SparseCategoricalAccuracy()])
    return model
import numpy as np
# 类权重
model = get_compiled_model()

callbacks = [
    keras.callbacks.EarlyStopping(
        # 是否有提升关注的指标
        monitor='val_loss',
        # 不再提升的阈值
        min_delta=1e-2,
        # 2个epoch没有提升就停止
        patience=2,
        verbose=1)
]
model.fit(x_train, y_train,
          epochs=20,
          batch_size=64,
          callbacks=callbacks,
          validation_split=0.2)
# checkpoint模型回调
model = get_compiled_model()
check_callback = keras.callbacks.ModelCheckpoint(
    filepath='mymodel_{epoch}.h5',
    save_best_only=True,
    monitor='val_loss',
    verbose=1
)

model.fit(x_train, y_train,
         epochs=3,
         batch_size=64,
         callbacks=[check_callback],
         validation_split=0.2)

我用Windos 没有gpu测试的 环境不一样可能会有其他错误

import tensorflow
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras import layers


(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]


def get_compiled_model():
    inputs = keras.Input(shape=(784,), name='mnist_input')
    h1 = layers.Dense(64, activation='relu')(inputs)
    h2 = layers.Dense(64, activation='relu')(h1)
    outputs = layers.Dense(10, activation='softmax')(h2)
    model = keras.Model(inputs, outputs)
    model.compile(optimizer=keras.optimizers.RMSprop(),
                 loss=keras.losses.SparseCategoricalCrossentropy(),
                 metrics=[keras.metrics.SparseCategoricalAccuracy()])
    return model
import numpy as np
# 类权重
model = get_compiled_model()

initial_learning_rate = 0.1
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps=10000,
    decay_rate=0.96,
    staircase=True
)
optimizer = keras.optimizers.RMSprop(learning_rate=lr_schedule)
# 使用tensorboard
tensorboard_cbk = keras.callbacks.TensorBoard(log_dir='logs')
model.fit(x_train, y_train,
         epochs=5,
         batch_size=64,
         callbacks=[tensorboard_cbk],
         validation_split=0.2)
         

用tensorflow 原生的方法训练和测试

import tensorflow
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras import layers

inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x)

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype('float32') /255
x_test = x_test.reshape(10000, 784).astype('float32') /255

x_val = x_train[-10000:]
y_val = y_train[-10000:]

x_train = x_train[:-10000]
y_train = y_train[:-10000]
model = keras.Model(inputs=inputs, outputs=outputs)

# 优化器.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# 损失函数.
loss_fn = keras.losses.SparseCategoricalCrossentropy()

# 准备数据.
batch_size = 64
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size)

# 自己构造循环
for epoch in range(3):
    print('epoch: ', epoch)
    for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
        # 开一个gradient tape, 计算梯度
        with tf.GradientTape() as tape:
            logits = model(x_batch_train)

            loss_value = loss_fn(y_batch_train, logits)
            grads = tape.gradient(loss_value, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

        if step % 200 == 0:
            print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
            print('Seen so far: %s samples' % ((step + 1) * 64))

# 训练并验证
# 获取模型
inputs = keras.Input(shape=(784,), name='digits')
x = layers.Dense(64, activation='relu', name='dense_1')(inputs)
x = layers.Dense(64, activation='relu', name='dense_2')(x)
outputs = layers.Dense(10, activation='softmax', name='predictions')(x)
model = keras.Model(inputs=inputs, outputs=outputs)

# sgd优化器
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# 分类损失函数
loss_fn = keras.losses.SparseCategoricalCrossentropy()

# 设定统计参数
train_acc_metric = keras.metrics.SparseCategoricalAccuracy()
val_acc_metric = keras.metrics.SparseCategoricalAccuracy()

# 准备训练数据
batch_size = 64
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size)

# 准备验证数据
val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
val_dataset = val_dataset.batch(64)

# 迭代训练
for epoch in range(3):
    print('Start of epoch %d' % (epoch,))

    for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
        with tf.GradientTape() as tape:
            logits = model(x_batch_train)
            loss_value = loss_fn(y_batch_train, logits)
        grads = tape.gradient(loss_value, model.trainable_variables)
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

        # 更新统计传输
        train_acc_metric(y_batch_train, logits)

        # 输出
        if step % 200 == 0:
            print('Training loss (for one batch) at step %s: %s' % (step, float(loss_value)))
            print('Seen so far: %s samples' % ((step + 1) * 64))

    # 输出统计参数的值
    train_acc = train_acc_metric.result()
    print('Training acc over epoch: %s' % (float(train_acc),))
    # 重置统计参数
    train_acc_metric.reset_states()

    # 用模型进行验证
    for x_batch_val, y_batch_val in val_dataset:
        val_logits = model(x_batch_val)
        # 根据验证的统计参数
        val_acc_metric(y_batch_val, val_logits)
    val_acc = val_acc_metric.result()
    val_acc_metric.reset_states()
    print('Validation acc: %s' % (float(val_acc),))
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值