##tf.function的一个很酷的新功能是AutoGraph,它允许使用自然的Python语法编写图形代码
import tensorflow as tf
@tf.function
def simple_nn_layer(x, y):
return tf.nn.relu(tf.matmul(x, y))
x = tf.random.uniform((3, 3))
y = tf.random.uniform((3, 3))
print('x',x)
print('y',y)
print(simple_nn_layer(x, y))
如果我们检查注释的结果,我们可以看到它是一个特殊的可调用函数,它处理与TensorFlow运行时的所有交互。
simple_nn_layer
<tensorflow.python.eager.def_function.Function at 0x7ff5e164eb38>
如果代码使用多个函数,则无需对它们进行全部注释 - 从带注释函数调用的任何函数也将以图形模式运行。
def linear_layer(x):
return 2 * x + 1
@tf.function
def deep_net(x):
return tf.nn.relu(linear_layer(x))
deep_net(tf.constant((1, 2, 3)))
<tf.Tensor: id=39, shape=(3,), dtype=int32, numpy=array([3, 5, 7], dtype=int32)>
2.使用Python控制流程
在tf.function中使用依赖于数据的控制流时,可以使用Python控制流语句,AutoGraph会将它们转换为适当的TensorFlow操作。 例如,如果语句依赖于Tensor,则语句将转换为tf.cond()。
@tf.function
def square_if_positive(x):
if x > 0:
x = x * x
else:
x = 0
return x
print(‘square_if_positive(2) = {}’.format(square_if_positive(tf.constant(2))))
print(‘square_if_positive(-2) = {}’.format(square_if_positive(tf.constant(-2))))
square_if_positive(2) = 4
square_if_positive(-2) = 0
AutoGraph支持常见的Python语句,例如while,if,break,continue和return,支持嵌套。 这意味着可以在while和if语句的条件下使用Tensor表达式,或者在for循环中迭代Tensor。
@tf.function
def sum_even(items):
s = 0
for c in items:
if c % 2 > 0:
continue
s += c
return s
sum_even(tf.constant([10, 12, 15, 20]))
<tf.Tensor: id=149, shape=(), dtype=int32, numpy=42>
3.Keras和AutoGraph
也可以将tf.function与对象方法一起使用。 例如,可以通过注释模型的调用函数来装饰自定义Keras模型。
class CustomModel(tf.keras.models.Model):
@tf.function
def call(self, input_data):
if tf.reduce_mean(input_data) > 0:
return input_data
else:
return input_data // 2
model = CustomModel()
model(tf.constant([-2, -4]))
<tf.Tensor: id=281, shape=(2,), dtype=int32, numpy=array([-1, -2], dtype=int32)>
4.用AutoGraph训练一个简单模型
import tensorflow as tf
def prepare_mnist_features_and_labels(x, y):
x = tf.cast(x, tf.float32) / 255.0
y = tf.cast(y, tf.int64)
return x, y
def mnist_dataset():
(x, y), _ = tf.keras.datasets.mnist.load_data()
ds = tf.data.Dataset.from_tensor_slices((x, y))
ds = ds.map(prepare_mnist_features_and_labels)
ds = ds.take(20000).shuffle(20000).batch(100)
return ds
train_dataset = mnist_dataset()
model = tf.keras.Sequential((
tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dense(10)))
model.build()
optimizer = tf.keras.optimizers.Adam()
compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
def train_one_step(model, optimizer, x, y):
with tf.GradientTape() as tape:
logits = model(x)
loss = compute_loss(y, logits)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
compute_accuracy(y, logits)
return loss
@tf.function
def train(model, optimizer):
train_ds = mnist_dataset()
step = 0
loss = 0.0
accuracy = 0.0
for x, y in train_ds:
step += 1
loss = train_one_step(model, optimizer, x, y)
if tf.equal(step % 10, 0):
tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result())
return step, loss, accuracy
step, loss, accuracy = train(model, optimizer)
print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result())