算法时间复杂度

时间复杂度就是通常我们简称的复杂度,O(f(n))表示。
常见的算法时间复杂度由小到大依次为:

Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n*2)<Ο(n*3)<…<Ο(2*n)<Ο(n!)

举例说明:
O(1)
哈希表就是一个很好的实例,正常程序在存储数据的时候,将数据一条一条的存到表中,而在查询某条数据的时候,要对这种表轮询,就是一条一条的比较。而哈希表是这样的,在要存储一条数据的时候,首先是把这个数据根据自己的一套哈希算法来计算,得到一个存储地址,然后存入这个地址对应的位置,所以,当哈希表要查数据的时候,它是直接用哈希算法计算要查询的数据,得到一个存储地址,直接去这个存储地址取出数据就可以了,完全不用去轮询,所以他们所消耗的时间就特别明显了。

Ο(log2n)

i=1
while i < n:  
    i = i * 2

Ο(n)

s = 0
for i in n:
    s += i

Ο(n*2)

s = 0
for i in n:
    for j in n:
        s += i

Ο(n*3)

s = 0
for i in n:
    for j in n:
        for m in n:
            s += i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值