iOS 加载图片选择imageNamed 方法还是 imageWithContentsOfFile?

Apple官方的文档为生成一个UIImage对象提供了两种方法:

1. imageNamed,其参数为图片的名字;

2. imageWithContentsOfFile,其参数也是图片文件的路径。

那么两种有什么区别吗?

肯定是有的。根据Apple的官方文档:

imageNamed: 这个方法用一个指定的名字在系统缓存中查找并返回一个图片对象如果它存在的话。如果缓存中没有找到相应的图片,这个方法从指定的文档中加载然后缓存并返回这个对象。因此imageNamed的优点是当加载时会缓存图片。所以当图片会频繁的使用时,那么用imageNamed方法会比较好。例如:你需要在 一个TableView里的TableViewCell里都加载同样一个图标,那么用imageNamed加载图像效率很高。系统会把那个图标Cache到内存,在TableViewCell里每次利用那个图 像的时候,只会把图片指针指向同一块内存。正是因此使用imageNamed会缓存图片,即将图片的数据放在内存中,iOS的内存非常珍贵并且在内存消耗过大时,会强制释放内存,即会遇到memory warnings。而在iOS系统里面释放图像的内存是一件比较麻烦的事情,有可能会造成内存泄漏。例如:当一 个UIView对象的animationImages是一个装有UIImage对象动态数组NSMutableArray,并进行逐帧动画。当使用imageNamed的方式加载图像到一个动态数组NSMutableArray,这将会很有可能造成内存泄露。原因很显然的。

imageWithContentsOfFile:仅加载图片,图像数据不会缓存。因此对于较大的图片以及使用情况较少时,那就可以用该方法,降低内存消耗。

下面列举出两种方法的详细用法:


NSString *path = [[NSBundle mainBundle] pathForResource:@”icon” ofType:@”png”];
UIImage *image = [UIImage imageWithContentsOfFile:path];

以及:

 NSString *filePath = [[NSBundle mainBundle] pathForResource:fileName ofType:“png”];
 NSData *image = [NSData dataWithContentsOfFile:filePath];
 UIImage *image = [UIImage imageWithData:image]; //or = [UIImage imageWithContentsOfFile:filePath];

再次强调两种用法各有各的优点,需要针对具体的应用场景来使用他们。




大数据Flink从入门到原理到电商数据分析实战项目

11-07
如今的大数据技术应用场景,对实时性的要求已经越来越高。作为新一代大数据流处理框架,由于非常好的实时性,Flink独树一帜,在近些年引起了业内极大的兴趣和关注。Flink能够提供毫秒级别的延迟,同时保证了数据处理的低延迟、高吞吐和结果的正确性,还提供了丰富的时间类型和窗口计算、Exactly-once 语义支持,另外还可以进行状态管理,并提供了CEP(复杂事件处理)的支持。Flink在实时分析领域的优势,使得越来越多的公司开始将实时项目向Flink迁移,其社区也在快速发展壮大。 目前,Flink已经成为各大公司实时领域的发力重点,特别是国内以阿里为代表的一众大厂,都在全力投入,不少公司为Flink社区贡献了大量源码。如今Flink已被很多人认为是大数据实时处理的方向和未来,很多公司也都在招聘和储备了解掌握Flink的人才。 本教程将Flink理论与电商数据分析项目实战并重,对Flink基础理论知识做了系统的梳理和阐述,并通过电商用户行为分析的具体项目用多个指标进行了实战演练。为有志于增加大数据项目经验、扩展流式处理框架知识的工程师提供了学习方式。 二、教程内容和目标 本教程主要分为两部分: 第一部分,主要是Flink基础理论的讲解,涉及到各种重要概念、原理和API的用法,并且会有大量的示例代码实现; 第二部分,以电商作为业务应用场景,以Flink作为分析框架,介绍一个电商用户行为分析项目的开发实战。 通过理论和实际的紧密结合,可以使学员对Flink有充分的认识和理解,在项目实战中对Flink和流式处理应用的场景、以及电商分析业务领域有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。 三、谁适合学 1、有一定的 Java、Scala 基础,希望了解新的大数据方向的编程人员 2、有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员 3、有较好的大数据基础,希望掌握Flink及流式处理框架的求职人员

OpenVINO计算机视觉—实例实战

11-02
手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。 基本提纲: 1、课程综述、环境配置 2、OpenVINO范例-超分辨率(super_resolution_demo) 3、OpenVINO范例-道路分割(segmentation_demo) 4、OpenVINO范例-汽车识别(security_barrier_camera_demo) 5、OpenVINO范例-人脸识别(interactive_face_detection_demo) 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo) 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo) 8、NCS和GOMFCTEMPLATE 9、课程小结,资源分享

沐风老师Scratch3.0快速入门视频课程

05-05
  期待已久的Scratch3.0于北京时间2019年1月3日正式上线了!Scratch3.0在线版采用最新的HTML5技术开发,Windows离线版也做成了exe文件,这比之前的Scratch2.0线上线下版都采用的是flash技术要好的很多。原因:首先,线上flash技术已经被HTML5取代多年了,而Scratch却一直还在使用flash开发的2.0版本;第二,线下版Scratch2.0用的也是flash技术,用flash开发windows桌面程序,在功能扩展上受到很大的限制,说白了,flash很多功能根本无法实现,而Scratch3.0离线版是Windows标准的exe文件,这在功能的开发上就没有任何限制了。 【课程插图】   《沐风老师Scratch3.0快速入门》视频教程,是Scratch入门学习的经典教程,完全适合零基础学习Scratch的童鞋、老师和家长。本教程不仅演示了Scratch软件的基本操作方法,实例讲解编程的过程,而且还深入讲解演示了自定义变量、自制积木、角色间通讯这样的高级功能。整个教程虽然只有短短的几节课,却基本上覆盖了Scratch的全部功能。  听说过Scratch吗?发达国家的孩子都在学。Scratch编程是为6-18岁的少年儿童学习计算机编程开发启蒙教育而设计,帮助年轻人更具创造力、逻辑力、协作力。 这些都是生活在21世纪的人不可或缺的基本能力。而且家长可以和孩子一起学,从此家长和孩子有了一个共同的爱好和话题。学习、沟通和趣味尽在Scratch!
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值