
深度学习
文章平均质量分 69
龙雪zzZ
这个作者很懒,什么都没留下…
展开
-
ChatGPT Prompt工程浅谈
首先,我们不妨自己先想一想,会怎么写 Prompt。随便一想就一大堆:• 简单日常对话。比如询问对方姓名,是否开心等等。• 常识问答。比如问今天是周几,冬天如何取暖等等。• 知识问答。比如热力学第二定律是什么,设计模式中的策略模式适用于哪些场景等等。• 文本改写。比如给出一段话,让它改简单一些,或换个风格,同时给出要的风格是什么样子的。• 所有的 NLP 任务,包括:文本分类、实体标注、信息抽取、翻译、生成、摘要、阅读理解、推理、问答、纠错、关键词提取、相似度计算等等。原创 2023-02-07 18:34:05 · 32830 阅读 · 0 评论 -
GRU简述
GRU(Gate Recurrent Unit)是循环神经网络(Recurrent Neural Network, RNN)的一种。和LSTM(Long-Short Term Memory)一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。原创 2022-09-16 16:55:37 · 3408 阅读 · 0 评论 -
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED原创 2022-08-15 18:04:54 · 1830 阅读 · 0 评论 -
PyTorch:关于BCE、CE Loss的Mask分割二分类问题
形式1:输出为单通道 分析 即网络的输出output为 [batch_size, 1, height, width] 形状。其中batch_szie为批量大小,1表示输出一个通道,height和width与输入图像的高和宽保持一致。形式2:输出为多通道 分析 即网络的输出output为 [batch_size, num_class, height, width] 形状。其中batch_szie为批量大小,num_class表示输出的通道数与分类数量一致......原创 2022-07-24 21:00:27 · 1775 阅读 · 1 评论 -
Swin Transformer详解
引言目前Transformer应用到图像领域主要有两大挑战:视觉实体变化大,在不同场景下视觉Transformer性能未必很好 图像分辨率高,像素点多,Transformer基于全局自注意力的计算导致计算量较大针对上述两个问题,我们提出了一种包含滑窗操作,具有层级设计的Swin Transformer。其中滑窗操作包括不重叠的local window,和重叠的cross-window。将注意力计算限制在一个窗口中,一方面能引入CNN卷积操作的局部性,另一方面能节省计算量。在各大图..原创 2022-05-24 14:18:23 · 2375 阅读 · 0 评论 -
AttributeError: ‘NpzFile‘ object has no attribute ‘zip‘, Python在加载模型过程中报错
错误原因分析:这个一般是由于网络原因导致下载相关预训练模型未下载完成,导致存留了一个不完整的文件在缓存区中,再调用加载的代码,代码会优先加载已经缓存的文件,此时由于下载不完全就会报错。解决办法:找到缓存区的位置,一般是自己用户路径下:Windows: C:\Users\xxx\.cacheLinux: /home/xxxx/.cache如果是pytorch框架相关的模型,就会在torch\hub\checkpoints下,删除对应模型的文件名(比如:resnet50-19c8e3原创 2022-02-19 14:38:07 · 3095 阅读 · 4 评论 -
Zero-shot / One-shot / Few-shot Learning 简要阐述
1. Introduction在迁移学习中,由于传统深度学习的学习能力弱,往往需要海量数据和反复训练才能修得泛化神功。为了 “多快好省” 地通往炼丹之路,炼丹师们开始研究 Zero-shot Learning / One-shot Learning / Few-shot Learning。《董小姐》唱得好:爱上一匹野马 (泛化能力),可我的家里没有草原 (海量数据) 。下以该例子来结合说明。2. Learning类型(1) 零次学习(Zero-shot Learning...原创 2021-08-25 11:16:25 · 1812 阅读 · 0 评论 -
目标检测(Object Detection)入门简述
本文首先介绍目标检测的任务,然后介绍主流的目标检测算法或框架,重点为Faster R-CNN,SSD,YOLO三个检测框架。本文内容主要整理自网络博客,用于普及性了解。Objection Detection Tasks目前计算机视觉(CV,computer vision)与自然语言处理(Natural Language Process, NLP)及语音识别(Speech Recognition)并列为人工智能(AI,artificial intelligence)·机器学习(ML,machin原创 2021-08-12 15:44:04 · 516 阅读 · 0 评论 -
机器学习:多分类模型评价准则
机器学习中,遇见的往往是二分类问题比较多,二分类模型的模型评价准则很多,Auc_score,F1_score,accuracy等等都是比较常用的。而针对多分类问题来说,有些二分类的评价准则就相对而言不怎么适用了。虽然可以将多分类问题转化为多个2vs2问题进行讨论,步骤繁杂的同时效果也得不到保障。目前在进行多模态的一个分类研究,在模型评价时也废了不少脑筋,所以在这里将看到的比较常用的多分类评价准则进...原创 2020-04-10 23:41:44 · 830 阅读 · 0 评论 -
以一个现实例子开始说起轻松理解条件随机场(CRF)
理解条件随机场最好的办法就是用一个现实的例子来说明它。但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧。于是乎,我翻译了这篇文章。希望对其他伙伴有所帮助。原文在这里[http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/]假设你有许多小明同学一天内不同时段的照片,...原创 2020-03-01 10:11:32 · 471 阅读 · 0 评论 -
核函数的小理解
核方法升维主要的好处是线性可分。把本来非线性的特征,展开到线性了。原本两者同时存在需要做一个“与”操作 feature[1] & feature[2] == 1。有了第三维,只需要一个判断 feature[3] == 1 就可以了。在特征少或者简单的时候,还能这么一眼看出来,如果特征多,或者模式复杂的时候,核方法就能把复杂的模式分解到一个很容易解决的超平面里面来,用线性方法解。但这里,选用...原创 2020-03-17 23:49:09 · 390 阅读 · 0 评论 -
目标检测:NMS非极大值抑制
非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,用于目标检测中,就是提取置信度高的目标检测框,而抑制置信度低的误检框。一般来说,用在当解析模型输出到目标框时,目标框会非常多,具体数量由anchor数量决定,其中有很多重复的框定位到同一个目标,nms用来去除这些重复的框,获得真正的目标框。如下图所示,人、马、车上有很多框,通过nms,得到唯一的检测框。 NMS用于目标检测中提取分数最高的窗口。例如在行人检测中,滑动...原创 2021-08-12 15:31:15 · 323 阅读 · 0 评论 -
动量Momentum梯度下降的简单理解
梯度下降是机器学习中用来使模型逼近真实分布的最小偏差的优化方法。在普通的随机梯度下降和批梯度下降当中,参数的更新是按照如下公式进行的:W = W - αdWb = b - αdb其中α是学习率,dW、db是cost function对w和b的偏导数。随机梯度下降和批梯度下降的区别是输入的数据分别是mini-batch和all。然而,看到下图的场景:可以看出在cost function的图像并不是那么“圆”的情况下,,从某一点开始的梯度下降过程是及其曲折的。并不是直接走向中心点,而是需要浪原创 2020-08-10 19:47:58 · 936 阅读 · 0 评论 -
消融实验(ablation study)是什么?
说白了就是设立对照组/控制变量法的意思,通过去除/增加某个模块的作用,来证明该模块的必要性,如果消融实验后得到性能结果大幅变化,说明该模块起到了作用。原创 2020-07-15 11:50:10 · 41467 阅读 · 11 评论 -
多核学习、多视图学习、多任务学习和集成学习的区别和联系
多核学习既可以用在多任务学习,也可以用在多视图学习,也有研究同时对多任务和多视图同时采用多核的,目前已经有通用多任务多核学习方法。如果将多核用在多任务学习,相当于不同任务共享子空间的同时,还有各自特有的一个空间,这个特有空间通过采用不同的核来表示。多任务中采用多核,由此强调任务个性。如果将多核用在多视图学习,不同视图的数据采用不同的核,相当于多源数据融合的一种方法,这些也早有研究。而无论是多任务,多视图还是多核,都是希望充分利用不同来源的数据,去提高模型的整体效果,知识在不同任务和视图之间互通...原创 2020-07-12 21:51:44 · 1549 阅读 · 1 评论 -
机器学习:L1和L2正则化项的理解
正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作 ℓ1\ell_1ℓ1 -norm 和 ℓ2\ell_2ℓ2 -norm,中文称作 L1正则化 和 L2正则化,或者 L1范数 和 L2范数。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(...原创 2020-07-10 10:26:58 · 946 阅读 · 0 评论 -
六种强大的姿态识别估计的深度学习模型和代码
姿态估计的目标是在RGB图像或视频中描绘出人体的形状,这是一种多方面任务,其中包含了目标检测、姿态估计、分割等等。有些需要在非水平表面进行定位的应用可能也会用到姿态估计,例如图形、增强现实或者人机交互。姿态估计同样包含许多基于3D物体的辨认。英文版:https://modelzoo.co/blog/deep-learning-models-and-code-for-pose-es...翻译 2019-07-21 17:01:12 · 15858 阅读 · 0 评论 -
DNN、CNN、RNN、LSTM的区别
广义上来说,NN(或是DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。但是从狭义上来说,单独的DNN、CNN、RNN及LSTM也可以对比。DNN(深度神经网络)神经网络是基于感知机的扩展,而DNN可以理解为有很多隐藏层的神经网络。多层神经网络和深度神经网络DNN其实也是指的一个东西,D...原创 2019-10-07 12:45:33 · 3469 阅读 · 0 评论 -
深度学习:梯度下降法数学表示式的详细推导
很多深度学习的书籍以及网上介绍深度学习的相关文章里面介绍了梯度法求损失函数最优化,但很少会解释梯度法的数学式是怎么得出来的,经过一番数学推理和文献查找(其实Ian Goodfellow等著的《深度学习》也没有通俗解释,用了晦涩的语言和符号表示,没有具体说明,参见其第四章第三节),做此笔记。梯度通俗来说,梯度就是表示某一函数在该点处的方向导数沿着该方向取得较大值,即函数在当前位置的导数...原创 2019-09-13 22:40:36 · 2986 阅读 · 0 评论 -
Ubuntu16.04 Caffe系列 最新更新安装教程 附NVIDIA显卡安装及cuda、cudnn、caffe的安装
博文版本:NVIDIA 418.74(对应显卡2070,如果是1060的请下载较低版本的),cuda 10.0, cudnn 7.6.2, opencv 3.4.3总结了一些网上其他教程的坑并已修改,按照博文和普行计算机,不出意外,这是准确而又超快速度的安装总结。勘误联系方式:onyxiakylin@outlook.com第1步 安装依赖包安装后续步骤或环境必需的依赖包,依次...原创 2019-07-28 14:32:30 · 2907 阅读 · 0 评论