来自电力电容的降维打击

之前因为做1AE4的耳放,线路采用了类似parafeed的输出形式,因此在输出的位置,需要有一个电容来做输出电容,连接输出和音频变压器,但是这个电容非常难选,因为这个输出位置的电压高(105V的样子),电流虽然不大,但电压摆幅还是很大(满功率时,Vpp上100V),因此,电容的实际耐压必须大于160V才行,为了得到比较饱满的低频,容量还不能小了。我找了一圈电解电容,通常用于音频(分频器)的轴向电容耐压也就100V,其他的耐压高的试了几个,效果都很差,听起来怪怪的。不得已,将目光投向了大容量的MKP。但适合的MKP价格太高了,找了很久都没有心仪的,不得已买了一对米福的MKP10 47uf 回来做测试,其实效果已经不错了,米福不愧是专业做音频电容的,这一对电容的测值也很强悍:

100HZ D值 0.0002,1KHZ D值0.0012,10KHZ D值0.0087。

但这一对电容听了一段时间,总觉得有点欠缺,高频有点亮,低频下潜略薄,和朋友聊起这个问题,他告诉我可以找一对油电容试试,油电容音色偏暖,中频听感很好。其实我一直对油电容有点怕,因为之前很多古董油电容用的是PCBs( 多联氯苯),这货是强致癌物质,非常的毒。聊到这点的时候他表示现在的油电容已经不用PCBs了,可以多看看电容上的标记,大部分都标注了No PCBs。

于是我开始在海鲜市场准备找一些油电容来试试,各种品牌的都买了一些,直到有一天我找到一对Electronicon 的 E62 系列的油电容,容量合适,42uf,耐压1100V,属于电力电容,风机上拆下来的,价格很便宜,我对这个电容本身不是很在意,以为和之前的那些油电容差不多,结果一测试,让我大吃一惊:100HZ D值 0.0002,1KHZ D值0.0009,10KHZ D值0.0022!

这个电容彻底颠覆了我对薄膜电容固有的印象!因为薄膜电容本身是容量越大测值越差的。而这个电容的性能是彻底吊打我之前碰到的所有电容!

我把这个电容装上之后试听,听感非常的均衡,没有任何音染(没有其他油电容的那种暖色调),属于监听风格,低频饱满,中频适中,高频纤细可闻(甚至一些原来听不到的细节都能听见),我甚至没有并联小电容。

我在这个电容的官网上查了一下这个电容的datasheet,这个电容属于电力电容,可以用在非常恶劣的环境,统计寿命是20万小时。这个电容有如此强悍的性能,是因为这家公司独特的卷绕工艺和薄膜专利。电容内充的蓖麻油,可以有效地增加薄膜间的介电常数,增加电容的耐压并改善电容内部的电场分布。

关键是价格非常便宜,当然正品非常贵,可二手的价格甚至没有原价的1/20,能弄到这个电容,主要是受益于这几年欧洲拆风机,而且貌似欧洲这几年已经拆风机到尾声了,所以,果断地屯了,逃不过的真香定律。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值