神经网路学习7-线性模型

在这里插入图片描述
一个最简单的线性模型,w是权重,一般来说会取随机值,然后不断学习直到与预期相同
在这里插入图片描述
如此以此取每个值与真实值的差值,即评估误差
在这里插入图片描述
即找一个合适的权重w,使得平均误差最小
在这里插入图片描述
在这里插入图片描述
上面的是针对单个样本的,后面的是对整个train_set的,后面的那个就是MSE(均方误差)
在这里插入图片描述
穷举法找出最小的loss区间

import numpy as np
import matplotlib.pyplot as  plt
x_data=[1.0,2.0,3.0]#x
y_data=[2.0,4.0,6.0]#y

def forward(x):
    return x*w
def loss(x,y):
    y_pred=forward(x)
    return pow(y_pred-y,2)
w_list=[]
mse_list=[]
for w in np.arange(0.0,4.1,0.1):
    print('w=',w)
    l_sum=0
    for x_val,y_val in zip(x_data,y_data):
        y_pre_value=forward(x_val)
        loss_val=loss(x_val,y_val)
        l_sum+=loss_val
        print('\t',x_val,y_val,y_pre_value,loss_val)

    print('MSE=',l_sum/3)
    w_list.append(w)
    mse_list.append(l_sum/3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值