Dream
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
34、物理启发算法在生物医学成像中的应用
本文综述了物理启发算法在生物医学成像中的关键应用,涵盖CT、MRI、PET、超声、OCT和SPECT等多种成像技术。文章详细介绍了各类成像的物理原理与核心算法,如CT中的滤波反投影(FBP)和迭代重建、MRI中的K空间采样与正则化、PET中的MLEM/OSEM算法、超声的波束形成与弹性成像,以及OCT和SPECT的成像机制。同时分析了不同技术的优缺点与适用场景,探讨了多模态融合、人工智能结合及便携式设备等未来发展趋势,并通过临床案例展示了成像技术在疾病诊断中的实际价值。最后强调物理驱动算法对提升医学图像质量原创 2025-10-11 11:41:13 · 40 阅读 · 0 评论 -
33、医疗领域DICOM与HL7标准:实现数据互通与高效医疗
本文深入探讨了医疗领域中DICOM与HL7标准在实现数据互通和高效医疗中的关键作用。详细介绍了HL7消息标准(包括v2.x、v3和FHIR)的特点、应用场景及优势,分析了澳大利亚放射信息系统市场的现状与现有系统的局限性,并提出了基于AI、云基础设施和结构化数据利用的解决方案。文章还阐述了DICOM与HL7的互联机制、放射工作流程中的信息提取过程,以及FHIR在简化开发、支持实时共享和促进创新方面的优势。最后展望了未来医疗数据互通向智能化、跨机构共享、安全隐私强化及与物联网融合的发展趋势。原创 2025-10-10 13:41:46 · 87 阅读 · 0 评论 -
32、医学数字成像与通信(DICOM)及HL7标准在医疗信息领域的应用
本文深入探讨了医学数字成像与通信(DICOM)和健康级别7(HL7)标准在医疗信息领域的应用。详细介绍了DICOM在医学图像存储、传输和管理中的核心作用,以及HL7在临床与行政数据交换中的关键地位。文章分析了PACS、RIS和HIS系统的集成机制,阐述了DICOM与HL7协同工作流程,并讨论了数据安全、隐私保护及未来发展趋势,如人工智能、区块链和跨机构互操作性。旨在帮助读者全面理解两大标准如何推动医疗信息化、提升诊疗效率与患者安全。原创 2025-10-09 10:46:24 · 44 阅读 · 0 评论 -
31、非香农视角下直觉模糊集的不等式研究
本文从非香农视角出发,深入研究了直觉模糊集中的一组核心不等式,分析了其在不同参数条件下的成立情况。重点探讨了α和β的取值范围对不等式方向的影响,揭示了权重wi、函数f和对数底数D在不等式中的关键作用。通过mermaid流程图展示了不等式的推导与验证过程,并讨论了其在信息论与模糊数学中的实际应用。研究表明,这些不等式为处理不确定性信息提供了有力的数学工具,具有广泛的应用前景。原创 2025-10-08 15:25:10 · 23 阅读 · 0 评论 -
30、模糊集理论在数据编码与处理中的应用
本文探讨了模糊集理论,特别是直觉模糊集(IFS)在数据编码与处理中的应用。通过引入非隶属度和犹豫指数,IFS能更精确地描述数据传输中的不确定性。文章介绍了IFS的基本概念、运算规则,并讨论了其在模糊码、离散熵模型和加权参数模型中的应用。结合实际案例分析与未来发展趋势,展示了模糊集理论在优化编码、提升数据传输可靠性方面的优势,以及在人工智能、物联网等多领域融合中的广阔前景。原创 2025-10-07 12:47:35 · 35 阅读 · 0 评论 -
29、区块链与机器学习融合助力医疗物联网安全与性能提升
本文探讨了区块链与机器学习融合在医疗物联网中的应用,提出了一种基于区块链的混合支持向量机(SVM)与逻辑回归(LR)模型,用于提升医疗数据的安全性与系统性能。通过结合ECC、ECDH和ECDSA的轻量级加密技术保护医疗数据隐私,并利用SVM与LR进行恶意流量检测。实验结果表明,该混合模型在准确率(94.62%)、灵敏度、特异度和F值等指标上均优于朴素贝叶斯、决策树和随机森林等传统方法。同时,文章引入模糊集理论从非香农视角分析通信信号检测中的不确定性,进一步增强了系统的鲁棒性。最后,文章总结了技术融合的优势,原创 2025-10-06 12:03:03 · 30 阅读 · 0 评论 -
28、基于区块链的混合 SVMLR 方法助力物联网医疗
本文提出了一种基于区块链的混合SVMLR方法,用于提升物联网医疗环境下的多模态数据处理与安全管理。通过结合区块链技术与边缘计算,系统实现了患者数据的高效采集、加密传输、分布式存储与安全共享。文章分析了当前医疗系统在数据隐私、互操作性和安全性方面的挑战,设计了包含数据采集层、边缘计算层、区块链网络层和应用层的四层架构,并通过实验验证了系统在数据安全性、性能和共享性方面的有效性。同时探讨了计算资源消耗和法律法规等现存问题,为未来医疗信息化发展提供了可行的技术路径。原创 2025-10-05 15:03:14 · 26 阅读 · 0 评论 -
27、智能医疗:蚁群优化与卷积神经网络的创新融合
本文介绍了一种结合蚁群优化(ACO)和卷积神经网络(CNN)的新型智能医疗系统,旨在提升疾病诊断的准确性和效率。通过将ACO用于参数优化并与CNN深度融合,该混合模型在准确率、灵敏度、特异性和执行时间方面均显著优于传统方法。实验结果显示,ACO + CNN系统的准确率达到96.23%,执行时间仅为12.75ms,展现出强大的应用潜力。文章还探讨了智能医疗对个人、医疗机构、研究机构及宏观决策的积极影响,并展望了未来与物联网、纳米传感等技术融合的发展方向。原创 2025-10-04 13:52:49 · 27 阅读 · 0 评论 -
26、机器学习与人工智能在医疗健康领域的应用
本文探讨了机器学习与人工智能在医疗健康领域的广泛应用,重点分析了糖尿病预测模型中多种算法的性能对比,逻辑回归表现最优并实现了GUI集成。同时,文章综述了AI在精准医疗、医学影像诊断、远程监测和医疗资源管理中的应用进展,指出了伦理问题、数据安全与算法透明度等挑战。通过多个研究案例展示了技术创新趋势,并提出了未来多技术融合、个性化医疗深化及应对技术与伦理挑战的发展方向,展现了AI推动医疗智能化变革的巨大潜力。原创 2025-10-03 10:02:04 · 44 阅读 · 0 评论 -
25、利用机器学习技术构建糖尿病预测诊断模型
本文探讨了利用机器学习技术构建糖尿病预测诊断模型的方法与应用。基于皮马印第安糖尿病数据集,研究采用了K近邻、决策树、逻辑回归和随机森林等多种算法,经过数据预处理、特征选择、模型训练与评估,并通过超参数调整优化性能。实验结果表明,随机森林算法在准确率、召回率和ROC-AUC等指标上表现最优。最终,该模型被部署为具有图形用户界面的应用程序,便于医疗人员和患者进行便捷的糖尿病风险预测,助力早期诊断与干预。未来工作将拓展数据多样性并集成更多先进算法以提升模型效能。原创 2025-10-02 11:12:32 · 33 阅读 · 0 评论 -
24、物联网在医疗领域的应用
本文介绍了一个基于物联网的医疗监测系统,结合Arduino、Firebase和Android应用,实现患者生理数据的实时采集、处理与可视化。系统通过传感器收集心率、运动等健康信息,利用蓝牙传输至移动应用,并在用户友好的界面上展示,支持警报通知、数据存储与安全认证。该方案提升了医疗效率与患者护理质量,并展望了物联网在智能家居自动化领域的应用潜力,如气候控制、安全监控和能源管理。原创 2025-10-01 13:33:13 · 28 阅读 · 0 评论 -
23、物联网在医疗保健领域的应用与安全保障
本文探讨了物联网在医疗保健领域的应用与安全保障,重点分析了医疗云的安全需求、基于监督和集成机器学习的医疗传感器优化与验证方法,并展示了物联网在远程医疗、智能医院管理和药物管理中的实际应用。文章还深入讨论了数据安全、隐私保护和标准化等关键挑战,提出了采用加密技术、访问控制、区块链和人工智能等应对策略。最后,展望了物联网医疗向智能化、个性化和安全化发展的未来趋势,强调了技术创新与人才培养的重要性。原创 2025-09-30 14:44:12 · 43 阅读 · 0 评论 -
22、物联网医疗系统:保障患者实时数据安全
本文探讨了物联网在医疗领域的应用与挑战,重点分析了基于物联网的医疗监测架构、传感器类型及新型传感器的优化方法。文章详细介绍了物联网医疗云架构的组成,并深入讨论了系统面临的安全威胁,如网络协议漏洞、数据传输风险和应用兼容性问题。针对这些挑战,提出了基于区块链和椭圆曲线密码学的安全解决方案以及高效的隐私保护机制。通过远程患者监测和智能医疗护理等应用案例,展示了物联网技术在提升医疗服务效率与质量方面的优势。最后,展望了未来物联网医疗系统在安全性、互操作性和智能化方面的发展方向。原创 2025-09-29 11:54:28 · 27 阅读 · 0 评论 -
21、物联网医疗系统:安全与性能的前沿探索
本文探讨了物联网医疗系统在安全与性能方面的前沿发展。介绍了人工神经网络(ANN)的数学模型及其在医疗数据处理中的优异表现,ANN在准确率、F1分数、召回率和精确率等指标上均优于SVM、BPNN和CNN等算法。分析了物联网医疗系统面临的安全挑战,如数据泄露、网络攻击等,并提出了加强访问控制、数据加密、安全审计等应对策略。文章还阐述了医疗物联网(MIoT)的架构与功能,包括传感器设备、云计算、远程监测等,并展望了系统向智能化、个性化、远程化、集成化和标准化发展的趋势。通过先进技术与安全管理的结合,物联网医疗系统原创 2025-09-28 14:02:04 · 30 阅读 · 0 评论 -
20、物联网在医疗保健领域的应用与挑战
本文探讨了物联网在医疗保健领域的广泛应用,包括血压监测、血氧饱和度检测、智能康复、轮椅管理和移动医疗解决方案,并分析了其在成本、技术融合、网络架构、可扩展性、持续监控和数据安全等方面面临的挑战。文章还综述了基于深度学习、区块链和分布式系统的前沿研究,提出了一种基于人工神经网络的安全访问控制模型,旨在构建高效、安全的物联网医疗系统,推动智慧医疗的发展。原创 2025-09-27 16:50:02 · 33 阅读 · 0 评论 -
19、医疗科技前沿:黑真菌检测与物联网医疗安全访问控制系统
本文探讨了医疗科技前沿的两大创新方向:基于MobileNet v2的黑真菌检测模型与物联网医疗安全访问控制系统。黑真菌检测利用迁移学习和数据增强技术,在小样本数据集上实现了93%的高准确率,具备高效、低延迟的优势。物联网医疗系统结合无线传感器网络、深度学习与大数据技术,构建了安全、智能的健康监测与访问控制体系,支持远程医疗服务与医疗资源优化。文章还分析了系统的安全保障措施及未来应用前景,展望了技术在提升医疗效率与安全性方面的潜力。原创 2025-09-26 14:52:20 · 28 阅读 · 0 评论 -
18、医疗领域的物联网、加密技术与黑真菌病检测研究
本文探讨了物联网在医疗领域的应用架构,分析了Twofish加密算法在保护患者数据安全中的实现与性能,并研究了黑真菌病(毛霉菌病)的检测方法与挑战。通过智能传感设备、可穿戴技术与AI模型如ResNet50和MobileNet v2的应用,提升了疾病识别与数据处理效率。同时,文章强调了医疗信息系统面临的技术、隐私与人才挑战,提出需结合加密技术与安全框架以保障医疗数据安全,并推动人工智能在医疗领域的可持续发展。原创 2025-09-25 15:18:13 · 22 阅读 · 0 评论 -
17、物联网中使用Twofish加密的数字健康应用专用网络O - RAN
本文探讨了在物联网环境中结合Twofish加密算法与O-RAN架构的数字健康应用专用网络,分析其在医疗数据安全、实时传输和智能化管理方面的潜力。文章介绍了Twofish加密的性能特点及其在传感器数据保护中的应用流程,结合人工智能与机器学习技术在医疗领域的现状与挑战,阐述了O-RAN如何通过灵活部署、低延迟通信支持数字健康服务。同时,通过对现有医疗系统的局限性分析,提出了未来优化方向,强调标准化、隐私保护与多方协作的重要性,为医疗数字化转型提供了可行的技术路径与发展展望。原创 2025-09-24 14:21:13 · 32 阅读 · 0 评论 -
16、人工智能助力医疗:从高效医疗系统到精准脑肿瘤定位
本文探讨了人工智能在医疗领域的应用,重点分析了混合深度学习模型在脑肿瘤定位与脑组织分割中的研究进展。通过结合卷积神经网络(CNN)和循环神经网络(RNN),并融合迁移学习、注意力机制等技术,模型在精度和适应性方面表现优异,Dice系数达0.95,肿瘤定位准确率达0.91。文章综述了相关算法流程与研究工作,指出了当前面临的挑战,如数据异质性、实时性和可解释性问题,并展望了未来在算法优化、多模态融合及临床拓展方向的应用前景。原创 2025-09-23 09:45:08 · 24 阅读 · 0 评论 -
15、人工智能助力可靠高效的医疗系统
本文探讨了人工智能在医疗领域的广泛应用,重点分析了机器学习算法在医疗性能评估中的表现,其中逻辑回归(LR)模型以94.38%的F-分数展现出优越性能。文章详细介绍了AI在医疗网络威胁分析、数据管理、日常任务执行、个性化治疗设计、数字患者交互及药物研发等方面的应用优势与操作流程。通过专家系统、自然语言处理、神经网络等核心技术,AI正推动医疗服务向高效、精准和智能化发展。未来方向包括提升诊断准确性、拓展至罕见病与远程手术、加强数据安全,并与区块链、物联网等技术融合,构建更可靠、安全的智能医疗生态系统。原创 2025-09-22 09:09:55 · 36 阅读 · 0 评论 -
14、医疗物联网中的网络安全与机器学习应用
本文探讨了医疗物联网(IoMT)环境下的网络安全挑战与机器学习技术的应用,重点分析了医疗数据的完整性、保密性和可用性。综述了当前在医疗网络安全领域的研究成果,涵盖基于深度学习、联邦学习和区块链的安全架构,并提出了一种基于逻辑回归的威胁与漏洞评估方法。实验结果表明,该方法在准确率、精确率、召回率和F分数等指标上均优于SVM、决策树和随机森林等算法,展现出高效率、强可解释性和良好的二分类性能。文章进一步分析了逻辑回归在医疗网络安全中的优势,展望了多技术融合、主动防御、数据隐私保护及行业标准完善等未来发展趋势,为原创 2025-09-21 16:18:56 · 27 阅读 · 0 评论 -
13、物联网与机器学习在医疗领域的应用与挑战
本文探讨了物联网与机器学习在医疗领域的广泛应用与面临的挑战。从疫情推动远程医疗发展,到医疗4.0的兴起,分析了物联网(IoT)、人工智能(AI)、大数据等技术在智能医疗中的协同作用。文章介绍了医疗物联网系统的构成、机器学习在疾病预测与药物研发中的应用,并通过案例展示了远程心脏监测和糖尿病管理的成功实践。同时,深入讨论了数据隐私、模型可解释性、法规伦理和技术集成等关键挑战及应对策略。最后展望了个性化医疗、医疗机器人和数据共享的未来趋势,强调多方合作对推动智慧医疗健康发展的重要性。原创 2025-09-20 16:31:32 · 18 阅读 · 0 评论 -
12、物联网在医疗保健及相关领域的应用与创新
本文探讨了物联网在医疗保健及相关领域的广泛应用与创新,涵盖物联网医疗服务框架、智能医疗系统架构、COVID-19期间的货物运输车辆监测系统,以及基于互联网的患者监测和移动健康应用。文章详细介绍了物联网医疗系统的三类分类及典型健康管理平台,并阐述了医疗保健4.0的技术整合与未来发展趋势。同时,分析了实时远程医疗流程、mHealth的应用类型及其智能化前景,指出了技术发展带来的优势与挑战,展望了更加智能、高效、个性化的未来医疗体系。原创 2025-09-19 10:39:33 · 34 阅读 · 0 评论 -
11、卷积神经网络与物联网在医疗及交通领域的应用探索
本文探讨了卷积神经网络与物联网在医疗及交通领域的应用。基于成本敏感学习的CNN模型显著提升了COVID-19的检测性能,利用胸部X光片实现了更高的准确率和召回率。物联网通过传感器、云计算与AI技术,在医疗中实现患者数据采集与智能诊断,在交通中优化出行管理与安全监控。文章还分析了智能交通系统的传感器架构、智能医疗系统的构建路径,并总结了当前研究在物流、交通安全等方面的应用成果与局限。最后,讨论了物联网面临的安全、标准和可靠性挑战,并提出了应对策略,展望了未来技术融合的发展方向。原创 2025-09-18 09:20:10 · 30 阅读 · 0 评论 -
10、基于成本敏感学习的 COVID-19 与肺部疾病检测方法
本文提出一种基于卷积神经网络(CNN)的成本敏感学习方法,用于解决胸部X光图像中COVID-19检测面临的类别不平衡问题。通过为少数类别(COVID-19)分配更高的错误分类成本,结合数据预处理与模型优化,显著提升了模型的灵敏度与整体检测性能。实验结果表明,该方法在准确率、精确率、召回率和F1分数等指标上优于传统方法,达到95.86%的整体精确率,为临床辅助诊断提供了高效可靠的技术支持。原创 2025-09-17 13:32:19 · 21 阅读 · 0 评论 -
9、人工智能助力结核病诊断的进展与挑战
本文探讨了人工智能在结核病诊断中的应用进展与面临的挑战。从数据处理中的高维度和特征选择问题,到模型泛化性的提升需求,文章分析了AI在医学影像分析、预测高风险个体、耐药性预测、治疗监测及流行病学中的多方面应用。同时强调了AI模型在临床环境中尚未广泛应用的现状,提出需加强跨学科合作、伦理考量以及临床专业知识与数据驱动的协同作用,以推动AI在结核病防控中的实际落地与未来发展。原创 2025-09-16 09:19:24 · 33 阅读 · 0 评论 -
8、人工智能助力肺结核诊断:现状与挑战
本文综述了人工智能在肺结核诊断中的应用现状与未来挑战。文章介绍了肺结核杆菌的形态特征及传统诊断方法的局限性,重点探讨了机器学习、深度学习和人工神经网络(ANN)在肺结核检测中的研究进展。多种模型如支持向量机(SVM)、卷积神经网络(CNN)和广义回归神经网络(GRNN)被应用于胸部X光图像分析、放射学报告识别和临床数据预测,显著提升了诊断的准确性与效率。同时,文中列举了CAD4TB、Lunit INSIGHT等前沿AI辅助诊断工具,并指出当前面临的数据规模有限、高维度等问题。最后,文章展望了人工智能在肺结核原创 2025-09-15 16:13:10 · 49 阅读 · 0 评论 -
7、医疗领域的智能革新:从数据安全传输到结核病诊断
本文探讨了人工智能在医疗领域的两大应用:基于深度Q学习的神经网络(DQNN)算法在物联网医疗数据安全传输中的优势,以及人工智能在结核病诊断中的潜力。DQNN在准确性、敏感性、特异性及加解密效率方面优于传统模型;AI通过医学影像分析和患者数据综合判断,显著提升结核病诊断的准确性和效率。未来,多模态融合、个性化诊断与远程医疗将成为重要发展方向。原创 2025-09-14 14:56:29 · 16 阅读 · 0 评论 -
6、基于深度Q学习的神经网络在物联网医疗应用中的安全数据传输
本文探讨了基于深度Q学习的神经网络在物联网医疗应用中的安全数据传输。文章分析了物联网医疗系统的三层架构及其面临的安全挑战,指出了传统系统在应对未知攻击方面的局限性,并提出引入深度Q学习与深度学习技术以提升系统安全性与效率。研究构建了融合雾计算、区块链和能量收集模块的优化框架,通过DDQ-CLF算法和DO2QIEO卸载策略,有效降低了延迟与能耗,提高了数据传输的安全性与可靠性。结合多个相关研究成果,总结了当前在加密时间、准确率、灵敏度等关键指标上的进展,并展望了未来在应对复杂威胁、跨领域融合、系统可扩展性及隐原创 2025-09-13 09:34:11 · 29 阅读 · 0 评论 -
5、复值人工神经网络的同步分析
本文研究了具有分布式时变延迟的主从复值人工神经网络(CVANNs)的全局指数同步问题。通过结合Lyapunov理论、Halanay不等式和矩阵测度方法(MMM),提出了新的同步条件,无需对控制器矩阵施加对称性或正定性限制,提升了结果的一般性和适用性。理论分析与数值仿真验证了方法的有效性,结果显示主从系统状态误差快速收敛,实现了全局指数同步。研究在机器学习复杂数据分类与医学图像分析等领域具有广泛应用前景。未来可拓展至更复杂延迟模型、多主从系统同步及实际工程应用。原创 2025-09-12 16:46:25 · 27 阅读 · 0 评论 -
4、复值人工神经网络的同步分析
本文深入探讨了复值人工神经网络(CVANNs)的全局指数同步问题,建立了主从模型与同步误差系统,结合Lipschitz连续性假设和矩阵测度(MMM)理论,提出了实现全局指数同步的充分条件。通过构造合适的Lyapunov函数并利用Dini导数和引理分析,证明了在特定控制器增益矩阵下主从网络可实现指数同步。文章还提供了关键技术点解析、操作步骤总结及实例验证,为CVANNs在通信、控制等领域的应用提供了理论支持,并展望了未来研究方向。原创 2025-09-11 14:50:08 · 20 阅读 · 0 评论 -
3、深度学习在抑郁检测与医学图像处理中的应用
本文探讨了深度学习在抑郁检测与医学图像处理中的应用。在抑郁检测方面,提出了一种基于自适应提升和Bi-LSTM的AB-BiL模型,在RSDD数据集上显著优于现有方法;在医学图像处理方面,研究了复值人工神经网络(CVANNs)在非可微分布式时变延迟下的主从系统全局指数同步问题,采用Lyapunov函数、Halanay不等式和MMM方法推导出新的同步条件,并通过控制器实现同步,数值验证表明该方法有效。未来工作将聚焦于模型优化、复杂网络结构拓展及跨领域应用。原创 2025-09-10 15:06:56 · 40 阅读 · 0 评论 -
2、医疗大数据分析与抑郁症检测的深度解析
本文深入探讨了医疗大数据分析的常用工具、应用场景及面临的挑战,并聚焦于抑郁症检测中的深度学习模型研究。针对抑郁症数据类别不平衡的问题,提出了一种结合AdaBoost与Bi-LSTM的AB-BiL模型,通过AdaBoost缓解样本不均衡,利用Bi-LSTM提取序列特征,提升预测准确性。文章还综述了相关研究进展,展示了大数据与人工智能在医疗健康领域的巨大潜力。原创 2025-09-09 16:15:18 · 30 阅读 · 0 评论 -
1、医疗大数据分析:工具、应用与挑战
本文系统探讨了医疗大数据分析的关键工具、核心应用与面临挑战。内容涵盖医疗数据的多元来源,如电子健康记录(EHR)、生物医学图像、传感器和基因组数据,并基于大数据的6V特征进行深入剖析。文章详细介绍了描述性、预测性、规范性和探索性四类分析方法,并展示了其在疾病诊断、患者监测和资源管理中的综合应用。重点讨论了深度学习模型(如AB-BiL、MobileNet、CNN、RNN)在抑郁症、癌症、心血管疾病等检测中的高精度表现,以及物联网(IoT)在实时健康监测和智能车辆系统中的实践。同时,探讨了基于深度Q学习、Two原创 2025-09-08 14:08:45 · 39 阅读 · 0 评论
分享