假定有一个无限长的数轴,数轴上每个坐标都是0。现在我们进行n次操作

本文介绍了如何使用离散化和前缀和的方法解决一个在无限长数轴上进行n次操作和m次区间和查询的问题。首先,通过离散化将操作点集中,然后利用前缀和技巧高效地计算区间和。在离散化过程中,创建a[N]和b[N]数组存储操作点位置和值,并计算前缀和s[N]。最后,通过查询前缀和的差值快速回答区间和查询。提供的代码实现了这一解决方案。
摘要由CSDN通过智能技术生成

假定有一个无限长的数轴,数轴上每个坐标都是0。现在我们进行n次操作,每次操作将某一位置 x x x上的数加上c。接下来,进行m次询问,每次询问包含两个整数 l l l r r r,你需要求出在区间 [ l ,    r ] \lbrack l,\;r\rbrack [l,r]之间的所有数的和。

数据范围:

− 1 0 9 ≤ x ≤ 1 0 9 , 1 ≤ n ,    m ≤ 1 0 5 − 1 0 9 ≤ l ≤ r ≤ 1 0 9 , − 10000 ≤ c ≤ 10000 -10^9\leq x\leq10^9,\\1\leq n,\;m\leq10^5\\-10^9\leq l\leq r\leq10^9,\\-10000\leq c\leq10000 109x109,1n,m105109lr109,10000c10000

解题思路

离散化+前缀和

离散化

由于操作点(操作过程中涉及的元素点)在数轴上可能过于分散,对后续处理不便,可以先通过离散化的手段,把在数轴上分散的操作点集中起来。具体做法:
可以考虑利用两个数组 a [ N ] a[N] a[N] b [ N ] b[N] b[N],其中, a [ N ] a[N] a[N]数组用来存储操作点的位置, b [ N ] b[N] b[N]用来存储操作点的最终值。

前缀和

求数轴上 [ l , r ] [l,r] [l,r]区间上所有元素之和,等同于求 [ l , r ] [l,r] [l,r]上所有操作点元素之和。具体做法有两种:

第一种方法

  1. a [ N ] a[N] a[N]中找到所有满足下列条件的 a [ i ] a[i] a[i]
    l ≤ a [ i ] ≤ r l\leq a\lbrack i\rbrack\leq r la[i]r
  2. 求和。
    ∑ b [ i ] i ∈ { i ∣ l ≤ a [ i ] ≤ r } \underset{i\in\{i\vert l\leq a\lbrack i\rbrack\leq r\}}{\sum b\lbrack i\rbrack} i{ila[i]r}b[i]

第二种方法(采用前缀和思想)

在得到 a [ N ] a[N] a[N] b [ N ] b[N] b[N] 之后,可以考虑先求出所有操作点的前缀和,这里用 s [ N ] s[N] s[N]来存储。 s [ i ] s[i] s[i]代表的含义是:位于数轴上 a [ i ] a[i] a[i]位置的操作点的前缀和。

基于前缀和,求数轴上 [ l , r ] [l,r] [l,r]区间上所有元素之和,等价于求 S r − S l − 1 S_r-S_{l-1} SrSl1注意这里的 S r S_r Sr s [ r ] s[r] s[r]是有区别的 S r S_r Sr代表的含义是:位于数轴上 r r r位置上的元素(不是操作点)的前缀和

如果数轴 l − 1 l-1 l1 r r r位置上的点为操作点,那么,肯定存在 i , j i,j i,j,使得:
a [ j ] = r a [ i ] = l − 1 S r = s [ j ] S l − 1 = s [ i ] a\lbrack j\rbrack=r\\a\lbrack i\rbrack=l-1\\S_r=s\lbrack j\rbrack\\S_{l-1}=s\lbrack i\rbrack a[j]=ra[i]=l1Sr=s[j]Sl1=s[i]
此时:
S r − S l − 1 = s [ j ] − s [ i ] S_r-S_{l-1}=s\lbrack j\rbrack-s\lbrack i\rbrack SrSl1=s[j]s[i]

如果数轴 l − 1 l-1 l1 r r r位置上的点不为操作点,可以把它们看成 l − 1 l-1 l1 r r r位置上, c = 0 c=0 c=0的操作点。然后按照前面的操作计算 S r − S l − 1 S_r-S_{l-1} SrSl1

代码实现

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
typedef pair<int, int> PII;

const int N = 300010;
int n, m;
int a[N], s[N];

vector<int> alls;   //alls用来存储所有出现的index
vector<PII> add, query;     //add用来存储每次操作的x和c,query用来存储每次查询的l和r
//查找某一个下标x在alls中的位置
int find(int x){
    int l = 0, r = alls.size() - 1;
    while(l < r){
        int mid = l + r >> 1;
        if(alls[mid] >= x)  r = mid;
        else    l = mid + 1;
    }
    return l + 1;
}

int main(){
    cin >> n >> m;
    //读取并保存每次操作的x和c
    for(int i = 0; i < n; i++){
        int x, c;
        cin >> x >> c;
        add.push_back({x, c});
        alls.push_back(x);
    }
    //读取并保存每次操作的l和r
    for(int i = 0; i < m; i++){
        int l, r;
        cin >> l >> r;
        query.push_back({l, r});
        alls.push_back(l - 1);
        alls.push_back(r);
    }
    //对alls去重,排序(增序)
    sort(alls.begin(), alls.end());
    alls.erase(unique(alls.begin(), alls.end()), alls.end());
    //得到操作点的值
    for(auto item : add){
        int x = find(item.first);
        a[x] += item.second;
    }
    //得到操作点的前缀和以及位于数轴上l-1, r位置上的点的前缀和
    for(int i = 1; i <= alls.size(); i++){
        s[i] = s[i - 1] + a[i];
    }
    
    for(auto item : query){
        int l = find(item.first - 1), r = find(item.second);
        cout << s[r] - s[l] << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值