dream_home8407
码龄4年
关注
提问 私信
  • 博客:113,810
    113,810
    总访问量
  • 50
    原创
  • 33,478
    排名
  • 114
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
  • 加入CSDN时间: 2020-08-15
博客简介:

dream_home8407的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    741
    当月
    14
个人成就
  • 获得193次点赞
  • 内容获得40次评论
  • 获得706次收藏
  • 代码片获得2,547次分享
创作历程
  • 9篇
    2024年
  • 29篇
    2023年
  • 12篇
    2022年
  • 1篇
    2021年
  • 1篇
    2020年
成就勋章
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【大模型训练集RLHF,SFT,DPO,多模态的构建格式以及示例解析】

解释:在指令监督微调时,instruction 列对应的内容会与 input 列对应的内容拼接后作为人类指令,即人类指令为 instruction
input。Sharegpt 格式的偏好数据集同样需要在 chosen 列中提供更优的消息,并在 rejected 列中提供更差的消息。role: 指示说话者的角色,可能是“human”(人类用户)或“assistant”(模型助手)。结构: 同样是一个对象,包含角色和文本,表明这是一个被拒绝的输出。描述: 表示在给定上下文中,人类不选择的助手响应。
原创
发布博客 2024.11.05 ·
429 阅读 ·
22 点赞 ·
0 评论 ·
17 收藏

模型django封装uvicorn服务器部署实战

Uvicorn 是一个轻量级的 ASGI 服务器,它基于 uvloop 和 httptools 这两个高性能的异步库。Uvicorn 提供了快速的启动时间和低延迟的响应,非常适合用于生产环境。是一个开源且强大的Web框架,适用于快速开发和部署Python Web应用程序。3.启动django项目。2.安装Uvicorn。1.安装django。
原创
发布博客 2024.09.24 ·
330 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

大模型如何构建自己的数据集,以及停用词的使用实战

角色身份+任务具体目标+任务背景+输出示例+原文内容。
原创
发布博客 2024.08.27 ·
1256 阅读 ·
21 点赞 ·
1 评论 ·
13 收藏

pip离线安装accelerate

【代码】pip离线安装accelerate。
原创
发布博客 2024.08.15 ·
442 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

LLama-Factory大模型训练框架,基于自己数据集微调qwen7B模型实战

LLama-Factory,大模型训练框架,支持多种模型,多种训练方式,link。
原创
发布博客 2024.07.04 ·
2247 阅读 ·
26 点赞 ·
1 评论 ·
24 收藏

YOLOV8训练自己的数据集图文实战,包含voc数据集处理代码

yolov8官方链接:本文章是以labelimg标注好的voc数据集为基础,通过转换格式训练模型,
原创
发布博客 2024.05.31 ·
495 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

mmdetection使用自己的voc数据集训练模型实战

一.自己数据集整理将labelimg格式数据集进行整理1.1. 更换图片后缀为jpg2.删除xml和jpg名称不对应的图片1.3 查看class name1.4 创建以下目录结构其中JPEGImgs里面是所有图片Annotations里面是所有xml文件dataset.py文件代码为准备好一切后,python dataset.py自动划分数据集由此,数据集已经准备完成。
原创
发布博客 2024.02.06 ·
1420 阅读 ·
5 点赞 ·
0 评论 ·
12 收藏

mmdetection模型转onnx和tensorrt实战

mmdetection 中cascade-rcnn转tensorrt模型,并进行api推理
原创
发布博客 2024.02.05 ·
1151 阅读 ·
10 点赞 ·
0 评论 ·
6 收藏

使用MMYOLO中yolov8训练自己VOC数据集实战

目标检测旋转框目标检测。
原创
发布博客 2024.01.25 ·
1558 阅读 ·
8 点赞 ·
0 评论 ·
11 收藏

Ubuntu安装python步骤

【代码】Ubuntu安装python步骤。
原创
发布博客 2023.11.24 ·
544 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

Triton_server部署学习笔记

下载镜像。
原创
发布博客 2023.07.17 ·
757 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

GPT-1,GPT-2,GPT-3 InstructGPT论文学习笔记

GPT1-3,InstructGPT,论文学习
原创
发布博客 2023.07.17 ·
822 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

GLM 130B和chatGLM2-6B模型结构

可以自由设置单词mask,句子smask,文章gmask,可以根据任务的不同设置mask,文本理解设置单词级别mask,文本生成色湖之句子级别的gmask,glm130B中设置的师70%句子级别gmask,30%词级别mask,3,RoPE旋转式编码,绝对编码实现相对编码,主要就是对每个位置token中的q, k向量乘以矩阵,然后用更新的q,k向量做attention中的内积就会引入相对位置信息了。整个流程,相当于forward 参数的计算都是fp16,,更新梯度使用fp32,有更长的表示范围,
原创
发布博客 2023.07.11 ·
2169 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

LLaMA

和transformer不同的是,为了提高训练的稳定性,作者对transformer子层的输入进行归一化,而不是输出部分,残差链结构在进行归一化,使用RMSNorm归一化函数,swiGLU激活函数,代替RELU。基于transforme架构,7B模型堆叠32个decoder模块,输入维度是4096,每个mutil head attention中头的个数32个,预训练模型是使用1T的token,研究表明,最好的模型性能不是由最大的模型体积实现,而是在更多的数据上训练较小的模型实现。380个令牌/秒/GPU。
原创
发布博客 2023.07.03 ·
760 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Transformer面试题总结

BN是对同一个batch内的所有数据的同一个特征数据进行操作;1.2 解码器:解码器同样由N=6相同的层组成,除了和编码器有两个相同的子层以外,解码器第三个子层是带有掩码的注意力机制,Mask mutil-Head Attention ,做解码是一个自回归,需要确保当前时刻t的位置不会关注t以后的数据。(做内积的目的是计算q和k两个向量的相似度,两个向量越接近相似度越高,一个query中有n个q v 对,最后输出是n个结果,最后softmax会得到n个和为1的权重,乘以v得到最后的输出)
原创
发布博客 2023.06.27 ·
563 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

注意力机制,解码器和编码器的改进

Attention的结构Seq2seq是一个非常强大的框架,应用面很广,这里我们将介绍进一步强化seq2seq的注意力机制,基于attention机制,seq2seq可以像我们人类一样,将注意力集中在必要的信息上,
原创
发布博客 2023.06.20 ·
660 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

RNN生成文本,Decoder,Encoder,图像转文本

RNN生成文本。
原创
发布博客 2023.06.20 ·
484 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

LSTM输出门,遗忘门,输入门详细介绍以及代码实现

在学习正确解标签时,重要的是RNN层的存在,RNN层通过向过去传递有意义的梯度,能够学习时间方向上的依赖关系,此时梯度,包含哪些应该学习到有意义的信息,通过将这些信息向过去传递,RNN层学习长期的依赖关系,但是,如果这个梯度在中途变弱,则权重参数将不会被更新,也就是说,RNN层无法学习长期的依赖关系,
原创
发布博客 2023.06.12 ·
1924 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

解读Lawyer LLaMA,延申专业领域大模型微调:数据集构建,模型训练

大模型微调思路和数据集构建方式大致是如此,实操中发现项目最难的一点在于怎么构建自己的数据,无监督数据量太大,解析起来很费功夫,有监督的数据怎么完美构建等,因此需要数据梳理之处将数据有效分类很重要,提高模型识别其最核心的结论在于,通过加入检索模块,可以提升问答的可靠性,并且通过引入垂直领域的预巡数据和微调数据,都可以提升其领域性能。但在具体实践中,还需要考虑到领域数据和通用数据的组成情况,以及与下游任务之间的对齐情况。
原创
发布博客 2023.06.05 ·
3764 阅读 ·
3 点赞 ·
0 评论 ·
50 收藏

BERT通过堆叠Transformer编码器

在BERT(Bidirectional Encoder Representations from Transformers)中,通过堆叠Transformer编码器(Transformer encoder),可以捕捉一个句子中深度双向的词与词之间的信息,并使用输出层中的特殊标记[CLS]的向量来表示整个句子的向量。通过堆叠Transformer编码器,并使用输出层中的[CLS] token的向量来表示整个句子的向量,BERT能够提供深度的双向上下文理解能力,从而在多种自然语言处理任务中取得了显著的效果。
原创
发布博客 2023.06.02 ·
372 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多