Robberies
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 25051 Accepted Submission(s): 9239
Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.
For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.
His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.
His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
Sample Input
3 0.04 3 1 0.02 2 0.03 3 0.05 0.06 3 2 0.03 2 0.03 3 0.05 0.10 3 1 0.03 2 0.02 3 0.05
Sample Output
2 4 6
这道题是比较典型的01背包的动态规划问题,用dp[i]来表示偷i金额的时候不被抓的概率(注意:一定要是不被抓的概率,用被抓的概率会出错的)
状态转化方程:dp[j]=max(dp[j],dp[j-a[i].m]*(a-a[i].P))(max内的前一项表示不偷a[i].m的不被抓的概率,后一项表示偷了这a[i].m的不被抓的概率)
不被抓的概率=上次不被抓的概率*这次不被抓的概率
AC代码:
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=105;
typedef struct Node{
int m;
double P;
}node;
node a[maxn];
double dp[100005];
int main(){
int n,t,i,j,sum;
double p;
cin>>t;
while(t--){
sum=0;
cin>>p>>n;
for(i=1;i<=n;i++){
cin>>a[i].m>>a[i].P;
sum+=a[i].m;
}
for(i=1;i<=sum;i++){
dp[i]=.0;
}
dp[0]=1.0;
for(i=1;i<=n;i++){
for(j=sum;j>=a[i].m;j--){
dp[j]=max(dp[j],dp[j-a[i].m]*(1-a[i].P));
}
}
for(i=sum;i>=0;i--){
if(1-dp[i]<=p){
cout<<i<<endl;
break;
}
}
}
return 0;
}