2018.09.22 atcoder Integers on a Tree(构造)

该博客探讨了AtCoder上的一个构造问题,重点在于如何判断树上特殊点权值的奇偶性条件以及每个节点的取值范围,确保解的合法性。在满足条件的情况下,博主给出了构造解的方法。
摘要由CSDN通过智能技术生成

传送门
先考虑什么时候不合法。
第一是考虑任意两个特殊点的权值的奇偶性是否满足条件。
第二是考虑每个点的取值范围是否合法。
如果上述条件都满足的话就可以随便构造出一组解。
代码:

#include<bits/stdc++.h>
#define N 100005
#define inf 0x3f3f3f3f
using namespace std;
inline int read(){
    
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
int n,k,first[N],cnt,fa[N],val[N],low[N],high[N],ans[N],rt;
bool is[N];
struct edge{
    int v,next;}e[N<<1];
inline
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值