传送门
线段树基础题。
题意:要求维护区间区间中选择
c
c
c个数相乘的所有方案的和(
c
≤
20
c\le20
c≤20),支持区间加,区间取负。
由于
c
≤
20
c\le20
c≤20,因此可以对于每个线段树节点可以暴力维护
21
21
21个
s
u
m
sum
sum值,合并也很简单,是一个卷积的形式
s
u
m
i
=
∑
j
=
0
i
s
u
m
j
s
u
m
i
−
j
sum_i=\sum_{j=0}^isum_jsum_{i-j}
sumi=∑j=0isumjsumi−j可以用FFT优化一波(滑稽。
区间取负并没有什么难度,对于
s
u
m
i
sum_i
sumi来说,如果
i
i
i是偶数就并没有什么影响,如果
i
i
i是奇数把
s
u
m
i
sum_i
sumi变成
−
s
u
m
i
-sum_i
−sumi即可。
关键在于区间加。
考虑到区间加对每个
s
u
m
sum
sum的影响,我们把
a
1
a
2
.
.
.
a
n
a_1a_2...a_n
a1a2...an变成了
(
a
1
+
x
)
(
a
2
+
x
)
.
.
.
(
a
n
+
x
)
(a_1+x)(a_2+x)...(a_n+x)
(a1+x)(a2+x)...(an+x),我们设这个区间长度为
l
e
n
len
len,那么有组合数学的方法可以将这个式子展开:
n
e
w
s
u
m
i
=
∑
j
=
0
i
C
l
e
n
−
j
i
−
j
x
j
o
l
d
s
u
m
j
newsum_{i}=\sum_{j=0}^iC_{len-j}^{i-j}x^joldsum_j
newsumi=∑j=0iClen−ji−jxjoldsumj 相当于是枚举每个括号里面
x
x
x的个数来更新答案
然后就没啥了~~注意细节~~
代码:
#include<bits/stdc++.h>
#define lc (p<<1)
#define rc (p<<1|1)
#define mid (T[p].l+T[p].r>>1)
#define add(a,b) ((a)+(b)>=mod?(a)+(b)-mod:(a)+(b))
#define mul(a,b) ((ll)(a)*(b)%mod)
#define dec(a,b) ((a)>=(b)?(a)-(b):(a)-(b)+mod)
#define ri register int
using namespace std;
typedef long long ll;
const int mod=19940417,N=5e5+5;
int n,m,a[N],C[N][21];
inline int read(){
int ans=0,w=1;
char ch=getchar();
while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans*w;
}
struct Node{int l,r,sum[21],add;bool rev;Node(){l=r=add=rev=0;for(ri i=0;i<=20;++i)sum[i]=0;}}T[N<<2];
inline Node operator+(const Node&a,const Node&b){
Node ret;
ret.l=a.l,ret.r=b.r;
for(ri i=0;i<=20;++i)for(ri j=0;j<=i;++j)ret.sum[i]=add(ret.sum[i],mul(a.sum[j],b.sum[i-j]));
return ret;
}
inline void pushadd(int p,int v){
T[p].add=add(T[p].add,v);
for(ri i=min(T[p].r-T[p].l+1,20),len=T[p].r-T[p].l+1;~i;--i)for(ri j=i-1,mult=v;~j;--j,mult=mul(mult,v))
T[p].sum[i]=add(T[p].sum[i],mul(C[len-j][i-j],mul(mult,T[p].sum[j])));
}
inline void pushrev(int p){
T[p].rev^=1,T[p].add=dec(0,T[p].add);
for(ri i=0;i<=20;++i)if(i&1)T[p].sum[i]=dec(0,T[p].sum[i]);
}
inline void pushdown(int p){
if(T[p].rev)pushrev(lc),pushrev(rc),T[p].rev^=1;
if(T[p].add)pushadd(lc,T[p].add),pushadd(rc,T[p].add),T[p].add=0;
}
inline void build(int p,int l,int r){
T[p].l=l,T[p].r=r;
if(T[p].l==T[p].r){T[p].sum[0]=1,T[p].sum[1]=a[l];return;}
build(lc,l,mid),build(rc,mid+1,r),T[p]=T[lc]+T[rc];
}
inline void update(int p,int ql,int qr,int v){
if(ql<=T[p].l&&T[p].r<=qr)return v?pushadd(p,v):pushrev(p);
pushdown(p);
if(qr<=mid)update(lc,ql,qr,v);
else if(ql>mid)update(rc,ql,qr,v);
else update(lc,ql,mid,v),update(rc,mid+1,qr,v);
T[p]=T[lc]+T[rc];
}
inline Node query(int p,int ql,int qr){
if(ql<=T[p].l&&T[p].r<=qr)return T[p];
pushdown(p);
if(qr<=mid)return query(lc,ql,qr);
if(ql>mid)return query(rc,ql,qr);
return query(lc,ql,mid)+query(rc,mid+1,qr);
}
inline void init(){
for(ri i=0;i<=n;++i)C[i][0]=1;
for(ri i=1;i<=n;++i){
C[i][1]=i;
for(ri j=2;j<=min(20,i);++j)C[i][j]=add(C[i-1][j],C[i-1][j-1]);
}
build(1,1,n);
}
int main(){
n=read(),m=read();
for(ri i=1;i<=n;++i)a[i]=(read()%mod+mod)%mod;
init();
while(m--){
char s[2];
scanf("%s",s);
int l=read(),r=read(),v;
if(s[0]=='I'){
v=(read()%mod+mod)%mod;
if(!v)continue;
update(1,l,r,v);
}
else if(s[0]=='R')update(1,l,r,0);
else cout<<query(1,l,r).sum[read()]<<'\n';
}
return 0;
}