matrix
n ∗ m ≤ 5 e 5 , 1 ≤ a i , j ≤ 1 e 9 n*m≤5e5,1≤a_{i,j}≤1e9 n∗m≤5e5,1≤ai,j≤1e9
一道很妙的题。
首先大家应该都会无脑的 O ( n m 2 ) d p O(nm^2)dp O(nm2)dp,即我们固定左右端点和之间的字符串 S S S,从上往下扫计算每一行的贡献,对于第 i i i行的串 S i S_i Si,我们设上一个出现的满足 S j = S i S_j=S_i Sj=Si的位置为 j j j,那么 S i S_i Si对答案的贡献就是 ( i − j ) ∗ ( n − i + 1 ) (i-j)*(n-i+1) (i−j)∗(n−i+1)
于是对于每一种串我们可以维护其出现位置的集合 s e t S = { a 0 , a 1 , a 2 , . . , a t } set_S=\{a_0,a_1,a_2,..,a_t\} setS={
a0,a1,a2,..,at},其中 a 0 = 0 a_0=0 a0