雅礼集训2019 day5

这篇博客详细介绍了2019年雅礼集训中关于矩阵、序列和排列的题目解法。在矩阵问题中,通过O(nm²)动态规划优化到O(nm)的解决方案,利用 Trie 树进行高效维护。序列问题采用离线处理和位运算统计。排列问题则提出了O(nlogn)的倍增算法,解决了原题的限制。
摘要由CSDN通过智能技术生成

matrix

在这里插入图片描述
n ∗ m ≤ 5 e 5 , 1 ≤ a i , j ≤ 1 e 9 n*m≤5e5,1≤a_{i,j}≤1e9 nm5e5,1ai,j1e9
一道很妙的题。
首先大家应该都会无脑的 O ( n m 2 ) d p O(nm^2)dp O(nm2)dp,即我们固定左右端点和之间的字符串 S S S,从上往下扫计算每一行的贡献,对于第 i i i行的串 S i S_i Si,我们设上一个出现的满足 S j = S i S_j=S_i Sj=Si的位置为 j j j,那么 S i S_i Si对答案的贡献就是 ( i − j ) ∗ ( n − i + 1 ) (i-j)*(n-i+1) (ij)(ni+1)
于是对于每一种串我们可以维护其出现位置的集合 s e t S = { a 0 , a 1 , a 2 , . . , a t } set_S=\{a_0,a_1,a_2,..,a_t\} setS={ a0,a1,a2,..,at},其中 a 0 = 0 a_0=0 a0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值