跟这题貌似是一样的啊
传送门
题意:
对于一张无向图,它的权值是所有点的权值和,一个点权值是它度数的
m 次方,问所有 n 个点简单无向图的权值和。
n
≤
1
e
9
,
m
≤
2
e
5
n ≤ 1e9, m ≤ 2e5
n≤1e9,m≤2e5。
思路:
显然每个点在所有图中的贡献是一样的。
于是我们钦定一个点
i
i
i并计算它在所有图中的贡献
f
i
f_i
fi,这个贡献可以通过枚举它的度来计算:
f
x
=
2
C
n
−
1
2
∑
i
=
0
n
−
1
C
n
−
1
i
i
m
f_x=2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^m
fx=2Cn−12i=0∑n−1Cn−1iim
前面的
2
C
n
−
1
2
2^{C_{n-1}^2}
2Cn−12表示的是剩余
n
−
1
n-1
n−1个点在所有图中对应的连通情况,后面的
C
n
−
1
i
i
m
C_{n-1}^ii^m
Cn−1iim相当于是在剩余
n
−
1
n-1
n−1个点中选出来
i
i
i个跟
x
x
x连边,于是
x
x
x的贡献就统计出来了。
由于每个点的贡献是相同的,所以总贡献为
n
∗
2
C
n
−
1
2
∑
i
=
0
n
−
1
C
n
−
1
i
i
m
n*2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^m
n∗2Cn−12i=0∑n−1Cn−1iim
考虑将这个式子进行变形:
a
n
s
=
n
2
C
n
−
1
2
∑
i
=
0
n
−
1
C
n
−
1
i
i
m
ans=n2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^m
ans=n2Cn−12i=0∑n−1Cn−1iim
a
n
s
=
n
2
C
n
−
1
2
∑
i
=
0
n
−
1
C
n
−
1
i
∑
j
=
0
m
S
m
j
i
j
‾
ans=n2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^i\sum_{j=0}^mS_{m}^ji^{\underline j}
ans=n2Cn−12i=0∑n−1Cn−1ij=0∑mSmjij
然后更换枚举顺序:
a
n
s
=
n
2
C
n
−
1
2
∑
i
=
0
m
S
m
i
∑
j
=
0
n
−
1
j
i
‾
C
n
−
1
j
ans=n2^{C_{n-1}^2}\sum_{i=0}^mS_{m}^i\sum_{j=0}^{n-1}j^{\underline i}C_{n-1}^j
ans=n2Cn−12i=0∑mSmij=0∑n−1jiCn−1j
然后对最后一个
∑
\sum
∑里的东西考虑一下组合意义:意思应该是从
n
−
1
n-1
n−1个中选
j
j
j个出来,在从
j
j
j个中选
i
i
i个出来排列。
这个等价于从
n
−
1
n-1
n−1个中选
i
i
i个出来排列,剩下
n
−
i
−
1
n-i-1
n−i−1个可以选可以不选。
于是可以把式子继续变形:
a
n
s
=
n
2
C
n
−
1
2
∑
i
=
0
m
S
m
i
(
n
−
1
)
i
‾
2
n
−
i
−
1
ans=n2^{C_{n-1}^2}\sum_{i=0}^mS_{m}^i(n-1)^{\underline i}2^{n-i-1}
ans=n2Cn−12i=0∑mSmi(n−1)i2n−i−1
然后用
n
t
t
ntt
ntt预处理第二类斯特林数即可。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
static char buf[rlen],*ib,*ob;
(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
return ib==ob?-1:*ib++;
}
inline int read(){
int ans=0;
char ch=gc();
while(!isdigit(ch))ch=gc();
while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
return ans;
}
typedef long long ll;
const int mod=998244353;
inline int add(const int&a,const int&b){return a+b>=mod?a+b-mod:a+b;}
inline int dec(const int&a,const int&b){return a>=b?a-b:a-b+mod;}
inline int mul(const int&a,const int&b){return (ll)a*b%mod;}
inline void Add(int&a,const int&b){a=a+b>=mod?a+b-mod:a+b;}
inline void Dec(int&a,const int&b){a=a>=b?a-b:a-b+mod;}
inline void Mul(int&a,const int&b){a=(ll)a*b%mod;}
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)Mul(ret,a);return ret;}
const int N=200005,up=200000;
int fac[N],ifac[N];
inline void init(){
fac[0]=fac[1]=ifac[0]=ifac[1]=1;
for(ri i=2;i<=up;++i)fac[i]=mul(fac[i-1],i),ifac[i]=mul(ifac[mod-mod/i*i],mod-mod/i);
for(ri i=2;i<=up;++i)Mul(ifac[i],ifac[i-1]);
}
vector<int>w[20],pos[20];
int invv[20];
const int Lim=1<<20;
inline void ntt_init(){
for(ri tt=1,g,mt=1,inv=(mod+1)>>1,t=0;tt<Lim;tt<<=1,++t,Mul(mt,inv)){
w[t].resize(tt),pos[t].resize(tt);
w[t][0]=1,g=ksm(3,(mod-1)/(tt<<1));
invv[t]=mt;
for(ri i=1;i<tt;++i)w[t][i]=mul(w[t][i-1],g),pos[t][i]=(pos[t][i>>1]>>1)|((i&1)<<(t-1));
}
}
int lim,tim;
vector<int>a,b;
inline void Init(const int&up){lim=1,tim=0;while(lim<=up)lim<<=1,++tim;}
inline void ntt(vector<int>&a,int type){
for(ri i=0;i<lim;++i)if(i<pos[tim][i])swap(a[i],a[pos[tim][i]]);
for(ri i=1,a0,a1,t=0;i<lim;i<<=1,++t){
for(ri j=0,len=i<<1;j<lim;j+=len){
for(ri k=0;k<i;++k){
a0=a[j+k],a1=mul(w[t][k],a[j+k+i]);
a[j+k]=add(a0,a1),a[j+k+i]=dec(a0,a1);
}
}
}
if(~type)return;
reverse(++a.begin(),a.end());
for(ri i=0;i<lim;++i)Mul(a[i],invv[tim]);
}
int ret,n,m;
int main(){
init();
ntt_init();
n=read(),m=read();
ret=0;
a.resize(m+1),b.resize(m+1);
for(ri i=0;i<=m;++i)a[i]=mul(ifac[i],ksm(i,m)),b[i]=i&1?mod-ifac[i]:ifac[i];
Init(m<<1);
a.resize(lim),b.resize(lim);
for(ri i=m+1;i<lim;++i)a[i]=b[i]=0;
ntt(a,1),ntt(b,1);
for(ri i=0;i<lim;++i)Mul(a[i],b[i]);
ntt(a,-1);
for(ri i=0,mt=1,det=n;i<=m;++i,Mul(mt,--det)){
if(i==n)break;
Add(ret,mul(a[i],mul(mt,ksm(2,n-i-1))));
}
Mul(ret,mul(n,ksm(2,(ll)(n-1)*(n-2)/2%(mod-1))));
cout<<ret<<'\n';
return 0;
}