Python - Pandas 数据统计函数

本文摘要:

1.汇总类统计
2.唯一去重和按值计数
3.相关系数和协方差

汇总类统计

# 统计所有数字列结果
df.describe()

统计结果类似下图,索引分别表示:

单词含义
count总行数
mean平均数
std标准差
min最小值
25% 50% 75%分位数
max最大值

在这里插入图片描述

# 查看单列Series的数据
df['bWendu'].mean()
df['bWendu'].max()
df['bWendu'].min()

唯一去重和按值计数

唯一性去重,一般不用于数值列,而是枚举、分类列

df['tianqi'].unique()
df['fengxiang'].unique()
# 返回array对象

按值计数,前面我们已经见过了

df['tianqi'].value_counts()
df['fengxiang'].value_counts()
# 返回Series对象,键为某一类别,值为数量

相关系数和协方差

用途:
在这里插入图片描述

# 协方差矩阵
df.cov()

在这里插入图片描述

# 相关系数矩阵
df.corr()

在这里插入图片描述

# 单独查看两列的相关系数
df['aqi'].corr(df['yWendu'])

df['aqi'].corr(df['bWendu'] - df['yWendu'])

*此文仅为个人笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值