高等工程数学(张韵华,汪琥庭,宋立功)—— 第一篇:线性代数

第一篇:线性代数

https://zhuanlan.zhihu.com/p/80690520 公式链接1

第二章:线性空间

第1题和第3题,第3题点题了。

  1. 证明 : rank ⁡ ( A T A ) = rank ⁡ ( A ) : \operatorname{rank}\left(A^{\mathrm{T}} A\right)=\operatorname{rank}(A) :rank(ATA)=rank(A).

    证明: 设 x 1 是 A x = 0 的 解 , 则 A x 1 = 0 ; A T A x 1 = A T ( A x 1 ) = A T ∗ 0 = 0 设x_1是Ax=0的解,则Ax_1=0;A^TAx_1=A^T(Ax_1)=A^T*0=0 x1Ax=0Ax1=0;ATAx1=AT(Ax1)=AT0=0.

    因为 x 1 是 A T A x 1 的 解 , 故 A x = 0 的 解 也 是 A T A x = 0 的 解 x_1是A^TAx_1的解,故Ax=0的解也是A^TAx=0的解 x1ATAx1Ax=0ATAx=0.

    设 x 2 是 A T A x = 0 的 解 , 则 A T A x 2 = 0 , 所 以 x 2 T ( A T A x 2 ) = ( x 2 A ) T ( A x 2 ) = 0 设x_2是A^TAx=0的解,则A^TAx_2=0,所以x_2^T(A^TAx_2)=(x_2A)^T(Ax_2)=0 x2ATAx=0ATAx2=0x2T(ATAx2)=(x2A)T(Ax2)=0.

    所以: A x 2 = 0 , 故 x 2 是 A x = 0 的 解 , 故 A T A x = 0 的 解 也 是 A x = 0 的 解 Ax_2=0,故x_2是Ax=0的解,故A^TAx=0的解也是Ax=0的解 Ax2=0,x2Ax=0ATAx=0Ax=0.

    综上: A x = 0 和 A T A x = 0 是 同 解 方 程 组 , 所 以 n − r ( A ) = n − r ( A T A ) , 故 r ( A ) = r ( A T A ) Ax=0和A^TAx=0是同解方程组,所以n-r(A)=n-r(A^TA),故r(A)=r(A^TA) Ax=0ATAx=0nr(A)=nr(ATA),r(A)=r(ATA).

    在这里插入图片描述
  2. α 1 , α 2 , α 3 \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} α1,α2,α3 线性无关. 证明 : β 1 = α 1 , β 2 = α 1 + α 2 , β 3 = α 1 + α 2 + α 3 : \boldsymbol{\beta}_{1}=\boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{2}=\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{3}=\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3} :β1=α1,β2=α1+α2,β3=α1+α2+α3 也线性无关.

    k 1 β 1 + k 2 β 2 + k 3 β 3 = ( k 1 + k 2 + k 3 ) α 1 + ( k 2 + k 3 ) α 2 + k 3 α 3 k_1β_1+k_2β_2+k_3β_3=(k_1+k_2+k_3)α_1+(k_2+k_3)α_2+k_3α_3 k1β1+k2β2+k3β3=(k1+k2+k3)α1+(k2+k3)α2+k3α3.

    因为 α 1 , α 2 , α 3 , 线 性 无 关 , 所 以 不 存 在 不 全 为 0 的 l 1 , l 2 , l 3 , 使 得 l 1 α 1 + l 2 α 2 + l 3 α 3 = 0 α_1,α_2,α_3,线性无关,所以不存在不全为0的l_1,l_2,l_3,使得l_1α_1+l_2α_2+l_3α_3=0 α1,α2,α3,线,0l1,l2,l3使l1α1+l2α2+l3α3=0,假设 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3线性相关,则存在 k 1 , k 2 , k 3 k_1,k_2,k_3 k1,k2,k3,不全为零使得 k 1 β 1 + k 2 β 2 + k 3 β 3 = ( k 1 + k 2 + k 3 ) α 1 + ( k 2 + k 3 ) α 2 + k 3 α 3 = 0 k_1β_1+k_2β_2+k_3β_3=(k_1+k_2+k_3)α_1+(k_2+k_3)α_2+k_3α_3=0 k1β1+k2β2+k3β3=(k1+k2+k3)α1+(k2+k3)α2+k3α3=0.与已知的矛盾。故 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3线性无关。

    行列式值法

  3. 设非齐次线性方程组 A m × n x = b ( b ≠ 0 ) A_{m \times n} x=b(b \neq 0) Am×nx=b(b=0) 有解, rank ( A ) = r (A)=r (A)=r η 1 , η 2 , ⋯   , η n − r \eta_{1}, \eta_{2}, \cdots, \eta_{n-r} η1,η2,,ηnr A x = 0 A x=0 Ax=0
    的基础解系, β \boldsymbol{\beta} β A m × n x = b A_{m \times n} x=b Am×nx=b 的某个解.证明 : 向量组 β , η 1 , η 2 , ⋯   , η n − r \boldsymbol{\beta}, \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n-r} β,η1,η2,,ηnr 线性无关.

    证明:

    k β + k 1 η 1 + k 2 η 2 + . . . . + k n − r η n − r = 0 kβ+k_1η_1+k_2η_2+....+k_{n-r}η_{n-r}=0 kβ+k1η1+k2η2+....+knrηnr=0.等式两边左乘A得到 k A β + k 1 A η 1 + k 2 A η 2 + . . . . + k n − r A η n − r = 0 kAβ+k_1Aη_1+k_2Aη_2+....+k_{n-r}Aη_{n-r}=0 kAβ+k1Aη1+k2Aη2+....+knrAηnr=0

    由已知得到 k A β = k b = 0 kAβ=kb=0 kAβ=kb=0,(这里等于0是因为前面的 k A β + k 1 A η 1 + k 2 A η 2 + . . . . + k n − r A η n − r = 0 kAβ+k_1Aη_1+k_2Aη_2+....+k_{n-r}Aη_{n-r}=0 kAβ+k1Aη1+k2Aη2+....+knrAηnr=0)由于 b ≠ 0 , 所 以 k = 0 , 所 以 k 1 η 1 + k 2 η 2 + . . . . + k n − r η n − r = 0 b\neq0,所以k=0,所以k_1η_1+k_2η_2+....+k_{n-r}η_{n-r}=0 b=0,k=0,k1η1+k2η2+....+knrηnr=0,由因为 η 1 , η 2 , ⋯   , η n − r \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n-r} η1,η2,,ηnr,线性无关,所以 k 1 = k 2 = . . . = k n − r = 0 k_1=k_2=...=k_{n-r}=0 k1=k2=...=knr=0,所以向量组 β , η 1 , η 2 , ⋯   , η n − r \boldsymbol{\beta}, \boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \cdots, \boldsymbol{\eta}_{n-r} β,η1,η2,,ηnr 线性无关.

  4. A A A n n n 阶方阵, η \boldsymbol{\eta} η n n n 维列向量,若存在正整数 k k k 使得 A k η = 0 , A^{k} \boldsymbol{\eta}=\mathbf{0}, Akη=0, A k − 1 η ≠ 0 , A^{k-1} \boldsymbol{\eta} \neq 0, Ak1η=0, 证 明: 向量组 η , A η , ⋯   , A k − 1 η \boldsymbol{\eta}, \boldsymbol{A} \boldsymbol{\eta}, \cdots, \boldsymbol{A}^{k-1} \boldsymbol{\eta} η,Aη,,Ak1η 线性无关.

    证明:设有常数 λ 0 , λ 1 , λ 2 . . . . λ k − 1 λ_0,λ_1,λ_2....λ_{k-1} λ0,λ1,λ2....λk1使得 λ 0 η + λ 1 A η + . . . . λ k − 1 A k − 1 η = 0 λ_0η+λ_1Aη+....λ_{k-1}A^{k-1}η=0 λ0η+λ1Aη+....λk1Ak1η=0.

    从而有 A k − 1 ( λ 0 η + λ 1 A η + . . . . λ k − 1 A k − 1 η ) = 0 A^{k-1}(λ_0η+λ_1Aη+....λ_{k-1}A^{k-1}η)=0 Ak1(λ0η+λ1Aη+....λk1Ak1η)=0

    从而 λ 0 A k − 1 η = 0 λ_0A^{k-1}η=0 λ0Ak1η=0,由题设 A k − 1 η ≠ 0 A^{k-1} \boldsymbol{\eta} \neq 0 Ak1η=0,所以 λ 0 = 0 λ_0=0 λ0=0

    类似可证 λ 1 = λ 2 . . . . = λ k − 1 = 0 λ_1=λ_2....=λ_{k-1}=0 λ1=λ2....=λk1=0,所以向量组 η , A η , ⋯   , A k − 1 η \boldsymbol{\eta}, \boldsymbol{A} \boldsymbol{\eta}, \cdots, \boldsymbol{A}^{k-1} \boldsymbol{\eta} η,Aη,,Ak1η 线性无关.

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CLiuso

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值