高等工程数学(张韵华,汪琥庭,宋立功)—— 第一篇:线性代数

第四章:欧式空间和二次型

投影:

  1. 例题设 u = ( 1 2 2 3 ) u=\left( \begin{array} { r } { 1 } \\ { 2 } \\ { 2 }\\{3} \end{array} \right) u=1223, v = ( 1 0 − 1 1 ) v=\left( \begin{array} { r } { 1 } \\ { 0 } \\ { -1 }\\{1} \end{array} \right) v=1011.求 P r o j v u Proj_vu Projvu.

    分析:将 v 单 位 化 , 然 后 e = v ∣ ∣ v ∣ ∣ , C o s θ = u T e ∣ ∣ u ∣ ∣ ∣ ∣ e ∣ ∣ = u T v ∣ ∣ u ∣ ∣ ∣ ∣ v ∣ ∣ v单位化,然后e=\frac{v}{||v||},Cosθ=\frac{u^Te}{||u||||e||}=\frac{u^Tv}{||u||||v||} ve=vv,Cosθ=ueuTe=uvuTv.

    P r o j v u = ∣ ∣ u ∣ ∣ C o s θ e = u T v ∣ ∣ v ∣ ∣ e = 2 3 v Proj_vu=||u||Cosθe=\frac{u^Tv}{||v||}e=\frac{2}{3}v Projvu=uCosθe=vuTve=32v.

    未命名绘图
  2. α \boldsymbol{\alpha} α 是一个单位向量. 证明 : Q = I − 2 α α T : Q=\boldsymbol{I}-2 \boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}} :Q=I2ααT 是一个正交矩阵. 当 α = 1 3 ( 1 , 1 , 1 ) T \boldsymbol{\alpha}=\frac{1}{\sqrt{3}}(1,1,1)^{\mathrm{T}} α=3 1(1,1,1)T
    求出 Q Q Q.

    Q T Q = ( I − 2 α α T ) ( I − 2 α α T ) = I − 4 α α T + 4 α α T α α T Q^TQ=(\boldsymbol{I}-2 \boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}})(\boldsymbol{I}-2 \boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}})=I-4{\alpha}{\alpha}^T+4{\alpha}{\alpha}^T{\alpha}{\alpha}^T QTQ=(I2ααT)(I2ααT)=I4ααT+4ααTααT.

    = I − 4 α α T + 4 α α T = I =I-4{\alpha}{\alpha}^T+4{\alpha}{\alpha}^T=I =I4ααT+4ααT=I

    所以 Q Q Q是一个正交矩阵

    Q = ( 1 3 − 2 3 − 2 3 − 2 3 1 3 − 2 3 − 2 3 − 2 3 1 3 ) Q=\left(\begin{matrix} \frac{1}{3} & \frac{-2}{3} & \frac{-2}{3} \\ \frac{-2}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{-2}{3} & \frac{-2}{3} & \frac{1}{3} \end{matrix}\right) Q=313232323132323231.

  3. 判断下列二次型是否是正定二次型:
    (1) Q ( x 1 , x 2 , x 3 ) = x 1 2 + 3 x 3 2 + 2 x 1 x 2 − 2 x 2 x 3 − 2 x 1 x 3 Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}-2 x_{2} x_{3}-2 x_{1} x_{3} Q(x1,x2,x3)=x12+3x32+2x1x22x2x32x1x3
    (2) Q ( x 1 , x 2 , x 3 ) = 3 x 1 2 + 4 x 2 2 + 5 x 3 2 + 2 x 1 x 2 − 2 x 2 x 3 − 2 x 1 x 3 Q\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}+4 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-2 x_{2} x_{3}-2 x_{1} x_{3} Q(x1,x2,x3)=3x12+4x22+5x32+2x1x22x2x32x1x3

    正定矩阵的判定:

    写出矩阵A

    1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。

    2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

    (1):

    P 1 = ∣ a 11 ∣ = 1 P 2 = ∣ 1 1 1 0 ∣ = − 1 P 3 = ∣ 1 1 − 1 1 0 − 1 − 1 − 1 3 ∣ ⇒ ∣ 1 1 − 1 0 − 1 0 0 0 2 ∣ = − 2 \left. \begin{array} { l } { P _ { 1 } = | a _ { 11 } | = 1 } \\ { P _ { 2 } = \left| \begin{array} { r r } { 1 } & { 1 } \\ { 1 } & { 0 } \end{array} \right| = - 1 } \\ { P _ { 3 } = \left| \begin{array} { r r r } { 1 } & { 1 } & { - 1 } \\ { 1 } & { 0 } & { - 1 } \\ { - 1 } & { - 1 } & { 3 } \end{array} \right| \quad \Rightarrow \left| \begin{array} { r r r } { 1 } & { 1 } & { - 1 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 2 } \end{array} \right| =-2} \end{array} \right. P1=a11=1P2=1110=1P3=111101113100110102=2

    故,不正定。

    (2):

    A = ( 3 1 − 1 1 4 − 1 − 1 − 1 5 ) P 1 = ∣ a 11 ∣ = 3 P 2 = ∣ 3 1 1 4 ∣ = 11 P 3 = ∣ 3 1 − 1 1 4 − 1 1 − 1 5 ∣ = 50 \begin{array}{l}A=\left(\begin{array}{rrr}3 & 1 & -1 \\ 1 & 4 & -1 \\ -1 & -1 & 5\end{array}\right) \\ P_{1}=\left|a_{11}\right|=3 \\ P_{2}=\left|\begin{array}{rrr}3 & 1 \\ 1 & 4\end{array}\right|=11 \\ P_{3}=\left|\begin{array}{rrr}3 & 1 & -1 \\ 1 & 4 & -1 \\ 1 & -1 & 5\end{array}\right|=50\end{array} A=311141115P1=a11=3P2=3114=11P3=311141115=50

    故,是正定二次型。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CLiuso

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值