马拉车

img

一.算法过程分析

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,在字符间插入一个字符(前提这个字符未出现在串里)。举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文 abba 和一个奇回文 opxpo,被转换为 #a#b#b#a##o#p#x#p#o#,长度都转换成了奇数。

  定义一个辅助数组 int p[]p[i] 表示以 ma[i]为中心的最长回文的半径,例如:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ma[i] $ # a # b # b # a # h # o # p # x # p #
p[i] 1 2 1 4 5 2 1 2 1 2 1 2 1 2 1 6 1 2 1

可以看出,p[i]-1 正好是原字符串中最长回文串的长度。

二.定义 R 为以 ma[id] 为中心的最长回文最右边界,也就是 R = id + p[id]ji关于 id 对称,根据回文的性质,p[i] 的值基于以下三种情况得出:

(1). $j$ 的回文串有一部分在 $id$  的**之外**,如下图:

img

​ 上图中,黑线为 id 的回文,ij 关于 id 对称,红线为 j 的回文。那么根据代码此时p[i] = R-i,即紫线。那么p[i] 还可以更大么?答案是不可能!见下图:

img

假设右边新增的紫色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 d ,也就是说 id 的回文不仅仅是黑线,而是黑线 + 两条紫线,矛盾,所以假设不成立,故p[i] = R-i,不可以再增加一分。

  (2)j 回文串全部在 id内部,如下图:

img

此时p[i] = p[j],那么p[i]还可以更大么?答案亦是不可能!见下图:

img

假设右边新增的红色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 b,也就是说 j 的回文应该再加上 ab ,矛盾,所以假设不成立,故p[i] = p[j],也不可以再增加一分。

  (3)j 回文串左端正好与 id 的回文串左端重合,见下图:

img

此时p[i] = p[j]p[i] = R - i ,并且p[i] 还可以继续增加,所以需要

while (ma[i - p[i]] == ma[i + p[i]]) 
    p[i]++;

代码如下:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn = 110010;
char s[maxn];
char Ma[maxn * 2];
int p[maxn * 2];
void Manacher(char s[], int len) {
    int l = 0;
    Ma[l++] = '$';
    Ma[l++] = '#';
    for(int i = 0; i < len; i++) {
        Ma[l++] = s[i];
        Ma[l++] = '#';
    }
    Ma[l] = 0;
    int pos = 0, R = 0;
    for(int i = 0; i < l; i++) {
        if(i < R)p[i] = min(p[pos * 2 - i], R - i);
        else p[i] = 1;
        while(Ma[i + p[i]] == Ma[i - p[i]])p[i]++;
        if(i + p[i] > R) R = i + p[i], pos = i;
    }
}
int main() {
    while(scanf("%s", s) != EOF) {
        int Max = 0;
        int len = strlen(s);
        Manacher(s, len);
        for(int i = 0; i < 2 * len + 2; i++) {
            Max = max(Max, p[i] - 1);
        }
        printf("%d\n", Max);
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/dreams___/article/details/79971832
个人分类: 随笔
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭