- 博客(4)
- 收藏
- 关注
原创 地图构建 -- occupancy grid mapping
但是很少有真实世界的应用能够满足这一假设,因为地图通常都是先验的, 或者是人们手工创建的。换句话说,我们先回避SLAM问题中的难点,在建图的时候有神谕(oracle)告知我们机器人的正确路径。我们可以发现,地图的构建就是寻找判断是否是障碍物,这样就把问题分解成为了一个二值概率的问题,讨论过这个问题的一个滤波器——二值贝叶斯滤波器。原理还是很简单的,就是遍历所有的网格,判断当前网格cell是否在传感器的扫描范围内,如果在的话,根据 𝑥𝑡 和 𝑧𝑡 来计算对数差异。显然,不是所有的建图问题的难度都一样。
2024-05-28 13:16:09 1153
原创 神经辐射场基于点,训练速度提升30倍,渲染质量超过NeRF
Point-NeRF_20K 只用了 40 分钟进行优化,而 NeRF 需要 20 + 小时,两者相比,Point-NeRF 快了近 30 倍,但 NSVF 的优化效果只比 Point-NeRF 的 40 分钟效果略好。该研究发现,即使经过 2 min / 1K 的微调迭代,Point-NeRF 也能获得非常高的视觉质量,可与 MVSNeRF 最终的 10k 次迭代结果相媲美,这也证明了 Point-NeRF 方法重建效率的高效性。然而,这种纯粹的逐场景优化依赖于现有的点云,并且可能非常缓慢。
2024-05-26 15:31:09 710
原创 TensorFlow使用Cudnn实现模型
用于 canonical-to-params-to-specific 转换的函数..用于 canonical-to-params-to-specific 转换的函数..用于 canonical-to-params-to-specific 转换的函数..用于 canonical-to-params-to-specific 转换的函数.用于 specific-to-canonical 转换的函数.用于 specific-to-canonical 转换的函数.将特定格式的 cuDNN 的参数转换为规范格式.
2024-05-23 13:53:04 855
原创 Carla Ros Autoware 联合仿真——安装、源码修改、数据预处理
在carla ros bridge中,Carla Spawn Objects节点下提供一项功能,当接收到2D pose initial话题(rviz中的2D Pose Estimate小按钮)后,会按照这个话题的位置和方向信息更新carla中车辆的位置,即使carla提供了点云图,用于rviz中的环境显示,但是carla仿真器与rviz中的坐标并不对应。如有错误,欢迎指正。以下部分秉持尽量不修改Carla ros bridge源码的原则,使用话题转发的方式,将carla中的数据适配到autoware。
2024-05-21 20:44:39 1191
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人