深度学习
文章平均质量分 56
Drknown
这个作者很懒,什么都没留下…
展开
-
在Google Colab中使用terminal
目前colab pro本身就支持terminal每个月大约11$, 当然还有其他功能:更大的内存,更长的session runtime(24h ?)。如果不想折腾可以用kora实现:!pip install korafrom kora import consoleconsole.start()原创 2021-05-14 10:02:40 · 6054 阅读 · 0 评论 -
在Google Colab中使用KITTI数据集
1. 获取Google Drive无限容量网盘使用Google共享网盘,无限容量,放数据集可以,例如KITTI,Kaggle这些。获取方法n多,可以自行google,我用的这个链接link。2. 在Colab中下载KITTI数据集到google网盘进入共享硬盘目录:%cd /content/drive/Shareddrives/创建一个文件夹用来保存KITTI数据集:%mkdir -p dataset/kitti进入kitti目录下载数据集:%cd dataset/原创 2021-05-13 17:43:30 · 997 阅读 · 0 评论 -
pip更改清华源
临时更改:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple package-name永久更改:pip install pip -U # update pippip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple原创 2020-12-31 09:14:44 · 692 阅读 · 0 评论 -
Python Pathlib库
在准备深度学习训练数据集的时候,经常需要操作数据集所在的文集夹。例如:获取某些图片的路径信息,生成路径list为后期dataset做准备。Python有很多操作路径的库,Pathlib是其中一个用起来很方便的库。例如我们有如下一个采集好图像数据的文件夹:.└── images ├── cat │ ├── 1.jpg │ ├── 2.jpg │ └── 3.jpg ├── dog │ ├── 1.jpg │ ...原创 2020-07-24 11:14:58 · 286 阅读 · 0 评论 -
利用ImageDataGenerator构建数据集
ImageDataGenerator属于Keras的图片预处理模块,在Tensorflow 2.0中已集成了Keras的API。本文利用ImageDataGenerator来完成一个基本的机器学习流程:检查并了解数据 建立输入管道 建立模型 训练模型 测试模型 改进模型并重复该过程1. 检查并了解数据: 导入必要的package from __future__ i...原创 2019-11-25 14:19:06 · 3810 阅读 · 0 评论 -
1. Keras/Tensorflow 2.0 自定义数据集 Dataset
在学习Tensorflow的过程中,发现大多数教程都是基于现有的数据集进行训练、优化。例如:MNIST识别教程,一个(x_train, y_train), (x_test, y_test) = mnist.load_data()即可获得训练、测试数据集。而在解决实际问题时,我们经常面对的是采集到的原始图片信息,这些图片保存在硬盘当中,当模型搭建好以后开始把数据从硬盘加载到内存,然...原创 2019-11-20 17:20:39 · 3841 阅读 · 3 评论 -
深度学习-卷积神经网络
卷积运算时filter在输入矩阵上滑动的步长叫stride记为S。S越小,提取的特征越多,但是S一般不取1,主要考虑时间效率的问题。S也不能太大,否则会漏掉图像上的信息。在卷积神经网络中,有一个非常重要的特性:权值共享。所谓的权值共享就是说,给一张输入图片,用一个filter去扫这张图,filter里面的数就叫权重,这张图每个位置是被同样的filter扫的,所以权重是一样的,也就是共...原创 2019-03-22 11:28:42 · 326 阅读 · 0 评论 -
机器学习常见代价函数
损失函数(Loss function)是定义在单个训练样本的损失/误差,也就是就算一个样本的误差,比如我们想要分类,就是预测的类别和实际类别的区别,是一个样本的哦,用L表示。代价函数(Cost function)是定义在整个训练集整体的误差描述,也就是所有样本的误差的总和的平均,也就是损失函数的总和的平均,有没有这个平均其实不会影响最后的参数的求解结果。 分类问题: 交叉熵,折页...原创 2019-03-21 15:58:10 · 718 阅读 · 0 评论 -
Ubuntu 18.04安装tensorflow with GPU suport
安装环境:CPU:Intel® Pentium(R) CPU G4400 @ 3.30GHz × 2 GPU:GTX 1060 RAM:8G OS:Ubuntu 18.04 64-bit1. 安装NVIDIA驱动 下载(地址)显卡驱动 这里选择了GTX 1060当前最新版410驱动。 安装依赖项: $ sudo dpkg --add-architecture i3...原创 2018-11-17 17:14:45 · 526 阅读 · 0 评论