直流电路篇 --- 基础

1 基本概念

1.1 基本单位及前缀

1.1.1 基本单位
量的名称单位名称单位符号
长度m
时间s
热力学温度开[尔文]K
发光强度坎[德拉]cd
质量千克kg
电流安[培]A
电荷量库[仑]C
1.1.2 单位前缀
所表示的因数前缀名称前缀符号
10 18 ^{18} 18艾[可萨]E
10 15 ^{15} 15拍[它]P
10 12 ^{12} 12太[拉]T
10 9 ^{9} 9吉[咖]G
10 6 ^{6} 6M
10 3 ^{3} 3k
10 2 ^{2} 2h
10 1 ^{1} 1da
10 − 1 ^{-1} 1d
10 − 2 ^{-2} 2c
10 − 3 ^{-3} 3m
10 − 6 ^{-6} 6u
10 − 9 ^{-9} 9纳[诺]n
10 − 12 ^{-12} 12皮[可]p
10 − 15 ^{-15} 15飞[母托]f
10 − 18 ^{-18} 18阿[托]a

1.2 电荷与电流

1.2.1 电荷

电荷是构成物质的原子的一种电气特性,单位是库伦(C)。

关于电荷要注意的三点:

  1. 库伦(C)是一个相当大的单位,1C = 6.24 × 10 18 ^{18} 18个电子
  2. 实际产生的电荷量只能是电子电荷量e = -1.602 × 10 − 19 ^{-19} 19 C 的整数倍
  3. 根据电荷守恒定律,电荷既不能被创造,也不能被消灭,只能转移;所以系统中电荷量的代数和是不变的

金属导体中的电流是由带负电荷的电子运动而产生的

电荷与电流

习惯上将正电荷的运动方向作为电流流动的方向

1.2.2 电流

电流是指电荷的时间变化率,单位为安倍(A)

公式:
i ≜ d q d t  ———— (1.1) i \triangleq \frac{dq}{dt}\text{ ------------ (1.1)} idtdq ———— (1.1)

≜ \triangleq 表示那是一个定义式

对式(1.1)中的电流两边取积分就得到从时刻 t 0 \text{t}_0 t0到t之间的电荷量:
Q ≜ ∫ t 0 t i d t  ———— (1.2) Q \triangleq \int_{t_0}^t{idt}\text{ ------------ (1.2)} Qt0tidt ———— (1.2)

直流电流(direct current, dc)是指不随时间变化的恒定电流,采用符号  I  \text{ I }  I 表示恒定电流

交流电流是指随时间按正弦规律变化的电流,用符号  i  \text{ i }  i 表示

1.3 电压

电压

要使导体内的电子向某个方向运动,需要功或者能量的转换,而这种转换需要外电动势(external electromotive force, emf)的推动,典型的电动势如上图的电池;电动势又称为电压(voltage)或电位差(potential difference)

如上图,电路中ab两点之间的电压 v a b \text{v}_{ab} vab是指从点a移动到点b所需要的能量(即所做的功),公式定义为:
v a b ≜ d w d q  ———— (1.3) v_{ab} \triangleq \frac{dw}{dq}\text{ ------------ (1.3)} vabdqdw ———— (1.3)
式(1.3)中:

  • w w w表示能量,单位焦耳(J)
  • q q q表示电荷,单位库伦(C)
  • 电压 v a b v_{ab} vab简写为 v v v,单位伏特(V)

电压(电位差)是指移动单位电荷通过某个元件所需要的能量,单位伏特(V)

1.3.1 参考方向

电压参考方向
如上图,正负(+,-)号用于定义参考方向或电压极性, v a b v_{ab} vab有两种方式解释:

  1. 点a的电位比点b的电位高 v a b v_{ab} vab
  2. 相对于点b,点a的点位是 v a b v_{ab} vab

且有下述等式:
v a b = − v b a  ———— (1.4) v_{ab} = -v_{ba}\text{ ------------ (1.4)} vab=vba ———— (1.4)

例子:
例子1

分析:

  1. 如上图a), v a b = + 9 V v_{ab} = +9V vab=+9V,表示点a的电位比点b的电位高9V;也就是说,从点a到点b有9V的电压降(voltage drop);或者等效地说,从点b到点a有9V的电压升(voltage rise)
  2. 如上图b), v a b = − 9 V v_{ab} = -9V vab=9V,表示点b的电位比点a的电位高9V;也就是说,从点a到点b有9V的电压升;或者从点b到点a有9V的电压降

扩展 — 电动势、电势能、电压、电位的关系


电动势 — 反映电源把其他形式的能转换成电能的本领的物理量。电动势使电源两端产生电压。在电路中,电动势常用E表示。单位是伏(V)。

  • 电动势的大小等于非静电力把单位正电荷从电源的负极,经过电源内部移到电源正极所作的功。如设W为电源中非静电力(电源力)把正电荷量q从负极经过电源内部移送到电源正极所作的功跟被移送的电荷量的比值,则电动势大小为: E = W q E = \frac{W}{q} E=qW
    • 如:电动势为6伏说明电源把1库正电荷从负极经内电路移动到正极时非静电力做功6焦。即有6焦的其他其形式能转换为电能。
  • 电动势的方向规定为从电源的负极经过电源内部指向电源的正极,即与电源两端电压的方向相反。

电势能(Ep) — 在静电学里,单位电荷由于受电场作用而具有由位置决定的能叫电势能,单位是焦耳。


电压 — 也被称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。

  • 大小等于单位正电荷因受电场力作用从A点移动到B点所做的功,单位伏特(V); 1 V = 1 J / C 1V = 1J/C 1V=1J/C,即1伏特的电压表示1库伦的正电荷在电场力的作用下做1焦耳的功。
  • 电压的方向规定为从高电位指向低电位的方向

电位 — 处于电场中某个位置的单位电荷所具有的电势能与它所带的电荷量之比。通常用φ来表示。电势只有大小,没有方向——是标量,其数值不具有绝对意义,只具有相对意义。

  • φ = E p q \varphi = \frac{Ep}{q} φ=qEp,单位是伏特(V); E p Ep Ep表示电势能, q q q表示电荷量
  • a点的电位 φ a \varphi{a} φa与b点的电位 φ b \varphi{b} φb之差称为电压 v a b v_{ab} vab,即 φ a − φ b = v a b \varphi{a} - \varphi{b} = v_{ab} φaφb=vab,称为电位差

1.4 功率与能量

功率是消耗或吸收能量的时间变化率,单位是瓦特(W)

数学表达式:
p ≜ d w d t  ———— (1.5) p \triangleq \frac{dw}{dt}\text{ ------------ (1.5)} pdtdw ———— (1.5)
式(1.5)中:

  • p p p为功率,单位瓦特(W)
  • w w w为能量,单位焦耳(J)
  • t t t为时间,单位秒(s)

由式(1.1)、式(1.3)和式(1.5)联合得:
p = d w d t = d w d q ⋅ d q d t = v i  ———— (1.6) p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = vi\text{ ------------ (1.6)} p=dtdw=dqdwdtdq=vi ———— (1.6)
即:
p = v i  ———— (1.7) p = vi\text{ ------------ (1.7)} p=vi ———— (1.7)
式(1.6)中的 p p p是一个时变量,称为瞬时功率

因此元件吸收或提供的功率是元件两端电压与流过该元件的电流的乘积;功率为正值,表示元件传递或吸收功率;功率为负值,表示元件发出功率

一般而言,吸收的正功率 = 发出的负功率。事实上,任何电路都必须遵守能量守恒定律,因此任何时刻电路中功率的代数和必须为零,即提供给电路的总功率必须与吸收的总功率平衡:
∑ p = 0  ———— (1.8) \sum{p} = 0\text{ ------------ (1.8)} p=0 ———— (1.8)
对式(1.6)积分可得,从 t 0 t_0 t0时刻到 t t t时刻元件所吸收或发出的能量:
w = ∫ t 0 t p d t = ∫ t 0 t v i d t  ———— (1.9) w = \int_{t_0}^{t}pdt = \int_{t_0}^{t} vidt\text{ ------------ (1.9)} w=t0tpdt=t0tvidt ———— (1.9)

能量是指做功的能力,单位焦耳(J)

电力公司以 瓦 特 ⋅ 小 时 ( W ⋅ h ) {瓦特}\cdot{小时}({W}\cdot{h}) (Wh)为单位度量能量,其中: 1 W ⋅ h = 3600 J {1W}\cdot{h} = {3600J} 1Wh=3600J

1.5 电路元件

元件是电路的基本组成部分,电路分析就是确定电路中元件两端的电压(或流过元件的电流)的过程。电路中有两种类型的元件:

  • 无源元件,不能产生能量,包括电阻、电容、电感等
  • 有源元件,能产生能量,包括发电机、电池、运算放大器等

最重要的有源元件是电压源和电流源,一般用于为与其连接的电路输送功率。电源又分为两种:

  • 独立源
  • 非独立源(又称为受控源)
1.5.1 独立源

理想的独立源是指能够提供与其它电路元件完全无关的特定电压或电流的有源元件
独立源

1.5.2 非独立源

理想的非独立源(受控源)是指其所提供的电压或电流受到其它电压或电流控制的有源元件 受控源

有四种形式的受控源:

  1. 电压控制电压源(VCVS)
  2. 电流控制电压源(CCVS)
  3. 电压控制电流源(VCCS)
  4. 电流控制电流源(CCCS)

1.6 解题方法

  1. 明确所要解决的问题
  2. 列出问题的全部已知条件
  3. 确定问题的备选解决方案,并且从中找出成功可能性最大的一种方案
  4. 尝试寻求问题的解
  5. 评价所得到的答案并检验其准确性
  6. 对结果是否满意?如果满意,则提交结果;否则返回步骤3重新执行这一过程

2 基本定律

2.1 欧姆定律

2.1.1 电阻

材料通常都具有阻止电荷流动的特性,这种物理特质,即阻碍电流的能力,叫做电阻。用符号R表示
均匀材料电阻的数学表达式为: R = ρ l A  ———— (2.1) R = \rho\frac{l}{A}\text{ ------------ (2.1)} R=ρAl ———— (2.1)
式(2.1)中:

  • ρ \rho ρ 称为电阻率,单位 Ω ⋅ m \Omega\cdot{m} Ωm
  • l l l 表示均匀材料的长度
  • A A A 表示均匀材料的截面面积

常见材料的电阻率

材料名称电阻率( Ω ⋅ m \Omega\cdot{m} Ωm)用途
1.64 × 1 0 − 8 1.64 \times 10^{-8} 1.64×108导体
1.72 × 1 0 − 8 1.72 \times 10^{-8} 1.72×108导体
2.45 × 1 0 − 8 2.45 \times 10^{-8} 2.45×108导体
2.8 × 1 0 − 8 2.8 \times 10^{-8} 2.8×108导体
4 × 1 0 − 5 4 \times 10^{-5} 4×105半导体
47 × 1 0 − 2 47 \times 10^{-2} 47×102半导体
6.4 × 1 0 2 6.4 \times 10^{2} 6.4×102半导体
纸张 1 × 1 0 10 1 \times 10^{10} 1×1010绝缘体
云母 5 × 1 0 11 5 \times 10^{11} 5×1011绝缘体
玻璃 1 × 1 0 12 1 \times 10^{12} 1×1012绝缘体
聚四氟乙烯 3 × 1 0 12 3 \times 10^{12} 3×1012绝缘体

电阻的符号
电阻符号

2.1.2 欧姆定律的定义

电阻两端的电压 v v v与流过该电阻的电流 i i i成正比
v ∝ i  ———— (2.2) v \propto i \text{ ------------ (2.2)} vi ———— (2.2)
而这个比例常数被定义为电阻R,即 v = i R  ———— (2.3) v = iR \text{ ------------ (2.3)} v=iR ———— (2.3)
电阻R是材料中的一种属性,电阻值会随温度等因素的变化而变化
将式(2.3)变换一下: R = v i  ———— (2.4) R = \frac{v}{i} \text{ ------------ (2.4)} R=iv ———— (2.4)
所以有: 1 Ω = 1 V / A 1\Omega = 1V/A 1Ω=1V/A
电阻消耗的功率可以表示为 p = v i = i 2 R = v 2 R p = vi = i^{2}R = \frac{v^2}{R} p=vi=i2R=Rv2
结论:

  • 电阻上消耗的功率既是电流的非线性函数,也是电压的非线性函数
  • 由式(2.1)知电阻是正值,所以电阻消耗的功率总是正的,即电阻总是吸收功率,这也证实了电阻是无源元件,不能产生能量
2.1.3 线性电阻与非线性电阻

遵循欧姆定律的电阻元件,称为线性电阻
线性电阻具有恒定的电阻值,其电流-电压特性曲线图如下,是通过原点的直线:
线性电阻

非线性电阻不遵守欧姆定律,其阻值随电流变化而变化
非线性电阻

2.1.4 电导

电路分析中另一个有用的量是电阻R的倒数,称为电导(conductance),用符号G表示
G = 1 R = i v  ———— (2.5) G = \frac{1}{R} = \frac{i}{v} \text{ ------------ (2.5)} G=R1=vi ———— (2.5)
电导用来度量某个元件传导电流的强弱程度,单位西门子(S)或倒过来的欧姆符号
电阻消耗的功率用电导G表示 p = v i = v 2 G = i 2 G p = vi = v^{2}G = \frac{i^2}{G} p=vi=v2G=Gi2

2.2 节点、支路、回路

区分电路与网络
为了区分电路与网络,可以将网络看成是若干元件或器件的相互连接,而电路则是指具体有一条或多条闭合路径的网络。在讨论网络拓扑结构问题时,习惯采用的术语通常是网络,而不是电路。

支路表示网络中的单个元件,如电压源、电阻等
支路
如上图包含5条支路,即一条支路表示任意一个二端元件

节点是指两条或多条支路的连接点
节点

回路是指电路中的任一闭合路径
在电路中从一个节点出发,无重复地经过一组节点,之后再回到起始节点,所构成的一条闭合路径就称为回路
如果一个回路至少包含一条不属于其他任何独立回路的支路,则称该回路为独立回路。由独立回路可以得到独立的方程组
如下图,三个独立回路分别是(蓝色部分):
独立回路

包括b条支路、n个节点和 l l l个独立回路的网络满足如下网络拓扑结构的基本定理: b = l + n − 1  ———— (2.6) b = l + n - 1\text{ ------------ (2.6)} b=l+n1 ———— (2.6)

2.2.1 串并联

如果两个或多个元件共享唯一一个节点,并传递同一电流,则称这种连接方式为串联

  • 如上图所示,10V电压源与R3电阻串联

如果两个或多个元件连接到相同的两个节点上,并且它们的两端是同一电压,则称这种连接方式为并联

  • 如上图,电阻R1、R2和电流源三者是并联关系

2.3 基尔霍夫定律

基尔霍夫定律包括:

  • 基尔霍夫电流定律,KCL
    基尔霍夫电流定律是基于电荷守恒定律,即一个系统中电荷的代数和是不变的。
    基尔霍夫电流定律是指流入任一节点(或任一闭合界面)的电流代数和为零
    数学表达式为: ∑ n = 1 N i n = 0  ———— (2.7) \sum^{N}_{n=1}{i_n} = 0 \text{ ------------ (2.7)} n=1Nin=0 ———— (2.7)
    其中, N N N为该节点相连的支路数, i n i_n in为流入(或流出)该节点的第 n n n条支路的电流。
    根据这一定律,可以认为流入节点的电流是正值,而流出节点的电流是负值,反之亦然。
    基尔霍夫电流定律的另一种形式是:流入节点的电流之和等于流出该节点的电流之和
    KCL
    根据图a)有: i 1 + i 2 + i 3 + ( − i 4 ) + ( − i 5 ) + ( − i 6 ) = 0 ⟹ i 1 + i 2 + i 3 = i 4 + i 5 + i 6 {i_1} + {i_2} + {i_3} + {(-i_4)} + {(-i_5)} + {(-i_6)} = 0 \Longrightarrow {i_1} + {i_2} + {i_3} = {i_4} + {i_5} + {i_6} i1+i2+i3+(i4)+(i5)+(i6)=0i1+i2+i3=i4+i5+i6
    根据图b),将红色圈圈住的闭合界面看成一个收缩后的节点,有: i 1 + i 2 + ( − i 3 ) + ( − i 4 ) + i 5 = 0 ⟹ i 1 + i 2 + i 5 = i 3 + i 4 {i_1} + {i_2} + {(-i_3)} + {(-i_4)} + {i_5} = 0 \Longrightarrow {i_1} + {i_2} + {i_5} = {i_3} + {i_4} i1+i2+(i3)+(i4)+i5=0i1+i2+i5=i3+i4
  • 基尔霍夫电压定律, KVL
    基尔霍夫电压定律是基于能量守恒原理得到的
    基尔霍夫电压定律是指任何闭合路径(或回路)上全部电压的代数和为零
    数学表达式为: ∑ m = 1 M v m = 0  ———— (2.8) \sum^{M}_{m=1}{v_m} = 0\text{ ------------ (2.8)} m=1Mvm=0 ———— (2.8)
    其中, M M M为回路中的电压数量(或回路中的支路数), v m v_m vm为第 m m m个电压。
    KVL
    根据上图,回路中得箭头为参数方向,得: ( − v 1 ) + v 2 + v 3 + ( − v 4 ) + v 5 = 0 {(-v_1)} + {v_2} + {v_3} + {(-v_4)} + {v_5} = 0 (v1)+v2+v3+(v4)+v5=0
    整理后: v 2 + v 3 + v 5 = v 1 + v 4 {v_2} + {v_3} + {v_5} = {v_1} + {v_4} v2+v3+v5=v1+v4
    即:电压降之和 = 电压升之和

2.4 串并联电阻

2.4.1 串联电阻及分压原理

串联电阻
如上图,根据欧姆定律,求电阻 R 1 , R 2 R_1,R_2 R1,R2两端得电压: v 1 = i R 1 , v 2 = i R 2  ———— (2.4.1.1) v_1 = iR_1, v_2 = iR_2\text{ ------------ (2.4.1.1)} v1=iR1,v2=iR2 ———— (2.4.1.1)
对如图回路使用KVL,得: − v + v 1 + v 2 = 0 ⟹ v 1 + v 2 = v  ———— (2.1.1.2) -v + v_1 + v_2 = 0 \Longrightarrow v_1 + v_2 = v \text{ ------------ (2.1.1.2)} v+v1+v2=0v1+v2=v ———— (2.1.1.2)
合并式(2.4.1.1)和式(2.4.1.2),得: v = i R 1 + i R 2 ⟹ v = i ( R 1 + R 2 )  ———— (2.4.1.3) v = iR_1 + iR_2 \Longrightarrow v = i(R_1 + R_2)\text{ ------------ (2.4.1.3)} v=iR1+iR2v=i(R1+R2) ———— (2.4.1.3)
即电路中的电流i为 i = v R 1 + R 2  ———— (2.4.1.4) i = \frac{v}{R_1 + R_2}\text{ ------------ (2.4.1.4)} i=R1+R2v ———— (2.4.1.4)
其中, R 1 + R 2 R_1 + R_2 R1+R2可以写成 R e q R_{eq} Req,即 R e q = R 1 + R 2 R_{eq} = R_1 + R_2 Req=R1+R2
整理式(2.4.1.4),得: R e q = R 1 + R 2 = v i R_{eq} = R_1 + R_2 = \frac{v}{i} Req=R1+R2=iv
结论:

  • 任意多个电阻串联后的等效电阻等于各个电阻值之和
    数学表达式为: R e q = ∑ n = 1 N R n R_{eq} = \sum^{N}_{n=1}R_n Req=n=1NRn
    其中, R e q R_{eq} Req表示等效电阻

合并式(2.4.1.1)和式(2.4.1.4),得:
v 1 = R 1 R 1 + R 2 v  ———— (2.4.1.5) v_1 = \frac{R_1}{R_1 + R_2}v \text{ ------------ (2.4.1.5)} v1=R1+R2R1v ———— (2.4.1.5)
v 2 = R 2 R 1 + R 2 v  ———— (2.4.1.6) v_2 = \frac{R_2}{R_1 + R_2}v \text{ ------------ (2.4.1.6)} v2=R1+R2R2v ———— (2.4.1.6)
结论:

  • 由式(2.4.1.5)和式(2.4.1.6)可知,电路中的电阻阻值越大,该电阻分得的电压就越大,这称为分压原理
  • 推广到N个电阻串联的电路: v n = R n ∑ n = 1 N R n v v_n = \frac{R_n}{\sum^{N}_{n=1}R_n}v vn=n=1NRnRnv
2.4.2 并联电阻及分流原理

并联电阻
如上图,根据欧姆定律,求通过电阻 R 1 , R 2 R_1,R_2 R1,R2的电流:
i 1 = v R 1  ———— (2.4.2.1) i_1 = \frac{v}{R_1} \text{ ------------ (2.4.2.1)} i1=R1v ———— (2.4.2.1)
i 2 = v R 2  ———— (2.4.2.2) i_2 = \frac{v}{R_2} \text{ ------------ (2.4.2.2)} i2=R2v ———— (2.4.2.2)
对节点a使用KCL,得:
i = i 1 + i 2  ———— (2.4.2.3) i = i_1 + i_2 \text{ ------------ (2.4.2.3)} i=i1+i2 ———— (2.4.2.3)
将式(2.4.1.1)(2.4.2.2)代入到式(2.4.2.3),得:
i = v R 1 + v R 2 = v ( 1 R 1 + 1 R 2 ) = v R e q i = \frac{v}{R_1} + \frac{v}{R_2} = v (\frac{1}{R_1} + \frac{1}{R_2}) = \frac{v}{R_{eq}} i=R1v+R2v=v(R11+R21)=Reqv
即等式: v ( 1 R 1 + 1 R 2 ) = v R e q v (\frac{1}{R_1} + \frac{1}{R_2}) = \frac{v}{R_{eq}} v(R11+R21)=Reqv两边约去电压 v v v,得:
1 R 1 + 1 R 2 = 1 R e q  ———— (2.4.2.4) \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_{eq}} \text{ ------------ (2.4.2.4)} R11+R21=Req1 ———— (2.4.2.4)
已知电阻的倒数称为电导,改写式(2.4.2.4)得:
G e q = G 1 + G 2 G_{eq} = G_1 + G_2 Geq=G1+G2
结论:

  • 并联电阻的等效电导等于各个电导之和
  • 一般式为:
    G e q = ∑ n = 1 N G n G_{eq} = \sum_{n=1}^{N}G_n Geq=n=1NGn

其中,式(2.4.2.4)中的 R e q R_{eq} Req为两个并联电阻的等效电阻,即:
R e q = R 1 R 2 R 1 + R 2  ———— (2.4.2.5) R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \text{ ------------ (2.4.2.5)} Req=R1+R2R1R2 ———— (2.4.2.5)
求图中电源电压 v v v
v = i R e q = i R 1 R 2 R 1 + R 2  ———— (2.4.2.6) v = iR_{eq} = i \frac{R_1 R_2}{R_1 + R_2} \text{ ------------ (2.4.2.6)} v=iReq=iR1+R2R1R2 ———— (2.4.2.6)
合并式(2.4.2.1)(2.4.2.6)得:
i 1 = i R 2 R 1 + R 2  ———— (2.4.2.7) i_1 = i \frac{R_2}{R_1 + R_2} \text{ ------------ (2.4.2.7)} i1=iR1+R2R2 ———— (2.4.2.7)
合并式(2.4.2.2)(2.4.2.6)得:
i 2 = i R 1 R 1 + R 2  ———— (2.4.2.8) i_2 = i \frac{R_1}{R_1 + R_2} \text{ ------------ (2.4.2.8)} i2=iR1+R2R1 ———— (2.4.2.8)
结论:

  • 由式(2.4.2.7)(2.4.2.8)得,并联电阻电路中,电阻阻值越大,通过该电阻的电流越小,这个规律称为分流原理

2.5 电阻 △ → Y \triangle \rightarrow Y Y等效变换

在电路分析中经常会遇到电阻既非并联也非串联的情况。如下图:
电桥
可以利用三端等效网络来简化上图中的电路。上图中的R2、R3和R4可以看成是一个 △ \triangle 形的网络,它由三个端点a、b、c构成,如下图:
三角形网络
将上图中的三角形抽取出来进行分析:
三角形等效成Y形

  1. 令三角形 △ \triangle 端点b开路,求端点a、c之间的电阻:
    R a c ( △ ) = R 2 R 3 + R 2 R 4 R 2 + R 3 + R 4  ———— (2.5.1) R_{ac}(\triangle) = \frac{R_2R_3 + R_2R_4}{R_2 + R_3 + R_4} \text{ ------------ (2.5.1)} Rac()=R2+R3+R4R2R3+R2R4 ———— (2.5.1)
    R a c ( △ ) 等于 R 3 、 R 4 串联然后与 R 2 并联 R_{ac}(\triangle)\text{等于}R_3\text{、}R_4\text{串联}\text{然后与}R_2\text{并联} Rac()等于R3R4串联然后与R2并联
    Y Y Y形电路端点b开路,求端点a、c之间的电阻:
    R a c ′ ( Y ) = R a + R c  ———— (2.5.2) R_{ac}'(Y) = R_a + R_c \text{ ------------ (2.5.2)} Rac(Y)=Ra+Rc ———— (2.5.2)
    R a c ′ ( Y ) 等 于 R a 、 R c 串联 R_{ac}'(Y)等于R_a \text{、}R_c\text{串联} Rac(Y)RaRc串联
  2. △ \triangle 电路与 Y Y Y电路的等效条件 R a c ( △ ) = R a c ( Y ) R_{ac}(\triangle) = R_{ac}(Y) Rac()=Rac(Y),即两电路端点a、c之间的等效电阻必须相等,合并式(2.5.1)(2.5.2)有:
    R 2 R 3 + R 2 R 4 R 2 + R 3 + R 4 = R a + R c  ———— (2.5.3) \frac{R_2R_3 + R_2R_4}{R_2 + R_3 + R_4} = R_a + R_c\text{ ------------ (2.5.3)} R2+R3+R4R2R3+R2R4=Ra+Rc ———— (2.5.3)
    同理,分别令其他两端点开路,求另外两端点之间的电阻,有:
    R 2 R 3 + R 3 R 4 R 2 + R 3 + R 4 = R a + R b  ———— (2.5.4) \frac{R_2R_3 + R_3R_4}{R_2 + R_3 + R_4} = R_a + R_b\text{ ------------ (2.5.4)} R2+R3+R4R2R3+R3R4=Ra+Rb ———— (2.5.4)
    R 2 R 4 + R 3 R 4 R 2 + R 3 + R 4 = R b + R c  ———— (2.5.5) \frac{R_2R_4 + R_3R_4}{R_2 + R_3 + R_4} = R_b + R_c\text{ ------------ (2.5.5)} R2+R3+R4R2R4+R3R4=Rb+Rc ———— (2.5.5)
  3. 式(2.5.3)减去式(2.5.4),得:
    R 2 R 4 − R 3 R 4 R 2 + R 3 + R 4 = R c − R b  ———— (2.5.6) \frac{R_2R_4 - R_3R_4}{R_2 + R_3 + R_4} = R_c - R_b\text{ ------------ (2.5.6)} R2+R3+R4R2R4R3R4=RcRb ———— (2.5.6)
    然后,式(2.5.6)与式(2.5.5)相加,得:
    R c = R 2 R 4 R 2 + R 3 + R 4  ———— (2.5.6a) R_c = \frac{R_2R_4}{R_2 + R_3 + R_4}\text{ ------------ (2.5.6a)} Rc=R2+R3+R4R2R4 ———— (2.5.6a)
  4. 式(2.5.3)减去式(2.5.5),得:
    R 2 R 3 − R 3 R 4 R 2 + R 3 + R 4 = R a − R b  ———— (2.5.7) \frac{R_2R_3 - R_3R_4}{R_2 + R_3 + R_4} = R_a - R_b\text{ ------------ (2.5.7)} R2+R3+R4R2R3R3R4=RaRb ———— (2.5.7)
    然后,式(2.5.7)与式(2.5.4)相加,得:
    R a = R 2 R 3 R 2 + R 3 + R 4  ———— (2.5.7a) R_a = \frac{R_2R_3}{R_2 + R_3 + R_4}\text{ ------------ (2.5.7a)} Ra=R2+R3+R4R2R3 ———— (2.5.7a)
  5. 式(2.5.5)减去式(2.5.3),得:
    R 3 R 4 − R 2 R 3 R 2 + R 3 + R 4 = R b − R a  ———— (2.5.8) \frac{R_3R_4 - R_2R_3}{R_2 + R_3 + R_4} = R_b - R_a\text{ ------------ (2.5.8)} R2+R3+R4R3R4R2R3=RbRa ———— (2.5.8)
    然后,式(2.5.8)与式(2.5.4)相加,得:
    R b = R 3 R 4 R 2 + R 3 + R 4  ———— (2.5.8a) R_b = \frac{R_3R_4}{R_2 + R_3 + R_4}\text{ ------------ (2.5.8a)} Rb=R2+R3+R4R3R4 ———— (2.5.8a)

结论:

  • Y Y Y形电路各电阻值等于 △ \triangle 电路中相邻两条支路电阻的乘积除以 △ \triangle 电路中三个电阻之和。
  • 化简后的电路如下图,只剩下串并联的电路,这样计算电路中的等效电阻时就容易多了
    化简后

2.6 电阻 Y → △ Y \rightarrow \triangle Y等效变换

Y形转三角形

结合第2.5小节,为求出将Y形电路转换为等效三角形电路的转换公式:

  1. 由式(2.5.6a)(2.5.7a)(2.5.8a)可以得:
    R a R b + R b R c + R c R a = R 2 R 3 R 4 ( R 2 + R 3 + R 4 ) ( R 2 + R 3 + R 4 ) 2 = R 2 R 3 R 4 R 2 + R 3 + R 4  ———— (2.6.1) R_aR_b + R_bR_c + R_cR_a = \frac{R_2R_3R_4(R_2 + R_3 + R_4)}{(R_2 + R_3 + R_4)^2} = \frac{R_2R_3R_4}{R_2 + R_3 + R_4} \text{ ------------ (2.6.1)} RaRb+RbRc+RcRa=(R2+R3+R4)2R2R3R4(R2+R3+R4)=R2+R3+R4R2R3R4 ———— (2.6.1)
  2. 用式(2.5.6a)(2.5.7a)(2.5.8a)分别除以式(2.6.1)得到:
    R 3 = R a R b + R b R c + R c R a R c R_3 = \frac{R_aR_b + R_bR_c + R_cR_a}{R_c} R3=RcRaRb+RbRc+RcRa
    R 4 = R a R b + R b R c + R c R a R a R_4 = \frac{R_aR_b + R_bR_c + R_cR_a}{R_a} R4=RaRaRb+RbRc+RcRa
    R 2 = R a R b + R b R c + R c R a R b R_2 = \frac{R_aR_b + R_bR_c + R_cR_a}{R_b} R2=RbRaRb+RbRc+RcRa

结论:

  • △ \triangle 形电路中各电阻值等于 Y Y Y形电路中所有电阻两两相乘之和除以相对应的 Y Y Y形电路支路电阻。
  • 如下图,Y形电路中的R2、R4、R5电阻可以等效为 △ \triangle 形电路中的 R a 、 R b 、 R c R_a、R_b、R_c RaRbRc电阻,这样电路中只剩下串并联边路,求解等效电阻时就容易多了。
    Y形转三角形

------ 扩展 ------
如果满足条件:
R 2 = R 3 = R 4 = R △ R_2 = R_3 = R_4 = R_{\triangle} R2=R3=R4=R
R a = R b = R c = R Y R_a = R_b = R_c = R_Y Ra=Rb=Rc=RY
则称 Y Y Y形电路与 △ \triangle 形电路是平行的,有如下关系:
R Y = R △ 3 R_Y = \frac{R_{\triangle}}{3} RY=3R
R △ = 3 R Y R_{\triangle} = 3R_Y R=3RY

3 附录

3.1 公式

名称定义公式
电流电流是指电荷的时间变化率,单位为安倍(A) i ≜ d q d t i \triangleq \frac{dq}{dt} idtdq
电荷量计算从时刻 t 0 t_0 t0 t t t之间的电荷量 Q ≜ ∫ t 0 t i d t Q \triangleq \int_{t_0}^t{idt} Qt0tidt
电压电压(电位差)是指移动单位电荷通过某个元件所需要的能量,单位伏特(V) v ≜ d w d q v \triangleq \frac{dw}{dq} vdqdw
功率功率是消耗或吸收能量的时间变化率,单位是瓦特(W) p ≜ d w d t p \triangleq \frac{dw}{dt} pdtdw
电阻均匀材料电阻的数学表达式, ρ \rho ρ 称为电阻率, l l l 表示均匀材料的长度, A A A 表示均匀材料的截面面积 R = ρ l A R = \rho\frac{l}{A} R=ρAl
欧姆定律电阻 R R R两端的电压 v v v与流过该电阻的电流 i i i成正比 v = R i v = Ri v=Ri
电导电导是元件传导电流的能力,单位西门子(S) G = 1 R = i v G = \frac{1}{R} = \frac{i}{v} G=R1=vi
基尔霍夫电流定律(KCL)基尔霍夫电流定律是指流入任一节点(或任一闭合界面)的电流代数和为零 ∑ n = 1 N i n = 0 \sum^{N}_{n=1}{i_n} = 0 n=1Nin=0
基尔霍夫电压定律(KVL)基尔霍夫电压定律是指任何闭合路径(或回路)上全部电压的代数和为零 ∑ m = 1 M v m = 0 \sum^{M}_{m=1}{v_m} = 0 m=1Mvm=0
串联电阻任意多个电阻串联后的等效电阻等于各个电阻值之和 R e q = ∑ n = 1 N R n R_{eq} = \sum^{N}_{n=1}R_n Req=n=1NRn
并联电阻并联电阻的等效电导等于各个电导之和 G e q = ∑ n = 1 N G n G_{eq} = \sum_{n=1}^{N}G_n Geq=n=1NGn
电阻 △ → Y \triangle \rightarrow Y Y等效变换 Y Y Y形电路各电阻值等于 △ \triangle 电路中相邻两条支路电阻的乘积除以 △ \triangle 电路中三个电阻之和
电阻 Y → △ Y \rightarrow \triangle Y等效变换 △ \triangle 形电路中各电阻值等于 Y Y Y形电路中所有电阻两两相乘之和除以相对应的 Y Y Y形电路支路电阻
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值