Median of Two Sorted Arrays 求两个排序数组中位数 题解翻译

【Problem】

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5

【Thinking】

this is the fourth problem on the leetcode website. The link ishttps://leetcode.com/problems/median-of-two-sorted-arrays/description/. You can try it by yourself.

First time, I used the brute force solution that sort the two arrays into a vector, then find the middle element in the vector.  As expected, the complexity over o(log(m+n)). It is not satisfied with the problem requirement. The run time complexity should be o(log(m+n)).

Second time, I choosed to directly find the middle element whentraversal the two array.Using the two

variables---(i,j)  to record the position of biggest number between arrays. when i+j==(nums1.length+nums2.length)/2, we find the middle element. We also should consider the nums1.length+nums2.length is odd(奇数) or even number(偶数)to choose different calculate way.


【Important】

Recursive Approach
递归的方法


To solve this problem, we need to understand "What is the use of median". In statistics, the median is used for:

为了解决这个问题, 我们需要理解 “中位数的用途” 。 统计学中,中位数被用于:


Dividing a set into two equal length subsets, that one subset is always greater than the other.

将一个集合分成两个相等长度的子集,一个子集总是比另一个子集大。


If we understand the use of median for dividing, we are very close to the answer.

如果我们理解了中位数在划分时的用途,我们就离答案不远了。 


First let's cut \text{A}A into two parts at a random position ii:

首先我们将A以任意位置i切分成两部分:


        left_A             |        right_A
    A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]
Since \text{A}A has mm elements, so there are m+1m+1 kinds of cutting (i = 0 \sim mi=0m).

因为A有m个元素,因此这里有m+1种切法(i=0~m)


And we know:

并且我们知道:



With the same way, cut \text{B}B into two parts at a random position jj:

用同样的方法,在任意位置j上将B切成两部分:

    left_B             |        right_B
    B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]
Put \text{left\_A}left_A and \text{left\_B}left_B into one set, and put \text{right\_A}right_A and \text{right\_B}right_B into another set. Let's name them \text{left\_part}left_part and \text{right\_part}right_part:

left_A和
\text{left\_B}
left_B放入一个集合,并且将right_A 和 \text{right\_B}right_B 放入另一个集合。我们把它们分别叫做 \text{left\_part}left_part和 \text{right\_part}right_part:


\text{left\_B}left_B放入一个集合,

   left_part          |        right_part
    A[0], A[1], ..., A[i-1]  |  A[i], A[i+1], ..., A[m-1]
    B[0], B[1], ..., B[j-1]  |  B[j], B[j+1], ..., B[n-1]

If we can ensure:

如果我们可以确定:


  1. len(left_part)=len(right_part)
  2. \max(\text{left\_part}) \leq \min(\text{right\_part})max(left_part)min(right_part)

then we divide all elements in \{\text{A}, \text{B}\}{A,B} into two parts with equal length, and one part is always greater than the other. Then

然后我们就可以将{A,B}中所有的元素分成有相同长度的两部分,并且其中的一部分总是比另一部分更大。然后










To ensure these two conditions, we just need to ensure:

为了确保上面的两个条件,我们只需要确保:


  1. i+j=mi+nj (or: m - i + n - j + 1mi+nj+1)
    if n \geq mnm, we just need to set:   i=0m, j=m+n+12i  i=0∼m, j=m+n+12−i

  2. \text{B}[j-1] \leq \text{A}[i]B[j1]A[i] and \text{A}[i-1] \leq \text{B}[j]A[i1]B[j]


ps.1 For simplicity, I presume \text{A}[i-1], \text{B}[j-1], \text{A}[i], \text{B}[j]A[i1],B[j1],A[i],B[j] are always valid even if i=0i=0i=mi=mj=0j=0, or j=nj=n

ps.1 简单来说,我假设 \text{A}[i-1], \text{B}[j-1], \text{A}[i], \text{B}[j]A[i1],B[j1],A[i],B[j]  即使在i=0i=mi=mj=0j=0, or j=nj=n 都是有效的。




I will talk about how to deal with these edge values at last.

我将会在最后讨论怎么样去处理这些边界值:


ps.2 Why n \geq mnm? Because I have to make sure jj is non-negative since 0 \leq i \leq m0im and j = \frac{m + n + 1}{2} - ij=2m+n+1i.

为什么 n \geq mnm? 因为我必须确保 jj是一个非负数 当0im 和 j = \frac{m + n + 1}{2} - ij=(m+n+1)/2-i

 If n < mn<m, then jj may be negative, that will lead to wrong result.

如果 n < mn<m, 那么j有可能是负数,那样会导致错误的结果。


So, all we need to do is:

所以,我们所有需要做的事情是:

Searching ii in [0, m][0,m], to find an object ii such that:

找到[0,m]中i的值,用它找到对象i,就像:

\qquad \text{B}[j-1] \leq \text{A}[i]\B[j1]A[i]  and \ \text{A}[i-1] \leq \text{B}[j],\ A[i1]B[j],  where j = \frac{m + n + 1}{2} - ij=2m+n+1i







And we can do a binary search following steps described below

并且我们可以跟随下面描述的步骤写一个二分查找


  1. Set \text{imin} = 0imin=0\text{imax} = mimax=m, then start searching in [\text{imin}, \text{imax}][imin,imax]
      1.设置imin=0\text{imax} = mimax=m,然后开始在
[\text{imin}, \text{imax}]
[imin,imax]范围中查找


      

       2.设置 i=(imin+imax)/2, j=(m+n+1)/2-i

       

     3.Now we have \text{len}(\text{left}\_\text{part})=\text{len}(\text{right}\_\text{part})len(left_part)=len(right_part). And there are only 3 situations that we may encounter:

     3.现在我们有 \text{len}(\text{left}\_\text{part})=\text{len}(\text{right}\_\text{part})len(left_part)=len(right_part). 并且这里我们也许会碰到的情形仅仅只有3种:

 

 一.   B[j1]A[i] and \text{A}[i-1] \leq \text{B}[j]A[i1]B[j] 

      Means we have found the object ii, so stop searching.

     意味着我们找到了对象 i, 可以停止查找。


二.   B[j1]>A[i] 
Means \text{A}[i]A[i] is too small. We must adjust ii to get \text{B}[j-1] \leq \text{A}[i]B[j1]A[i].

意味着 \text{A}[i]A[i] 太小,我们需要调整 i 去得到 \text{B}[j-1] \leq \text{A}[i]B[j1]A[i].

Can we increase ii?

我们能增加 i 吗?

 Yes. Because when ii is increased, jj will be decreased.

是的。因为当 i 增加时, j 将会减少。

So \text{B}[j-1]B[j1] is decreased and \text{A}[i]A[i] is increased, and \text{B}[j-1] \leq \text{A}[i]B[j1]A[i] maybe satisfied.

因此B[j1] 减小 并且 A[i] 增大, 这样B[j1]A[i] 也许会满足。

Can we decrease ii?

我们能够减小 i 吗?

 No! Because when ii is decreased, jj will be increased.、

不行!因为 当 i 减小时, j 将会被增加。

  So \text{B}[j-1]B[j1] is increased and \text{A}[i]A[i] is decreased, and \text{B}[j-1] \leq \text{A}[i]B[j1]A[i] will  be never satisfied.

因此 B[j-1] 将会增加 并且 A[i] 将会减少, 并且 B[j1]A[i] 将永远不会满足。

So we must increase i. That is, we must adjust the searching range to  [i+1, \text{imax}][i+1,imax]..
因此我们必须增加 i .那就是,我们必须调整搜索的范围到 [i+1, \text{imax}][i+1,imax].

So, set \text{imin} = i+1imin=i+1, and goto 2.

所以设置 imin= i+1, 然后跳转到第二步。


三. A[i−1]>B[j]:

Means A[i−1] is too big. And we must decrease to get i-1   ,  A[i−1]≤B[j].

意味着  A[i−1] 太大了。并且我们必须减小 i使它 i-1  , A[i−1]≤B[j]

That is, we must adjust the searching range to [imin,i−1]

那就是,我们必须调整寻找范围到[imin,i−1]

So, set imax=i−1, and goto 2.

因此,设置 imax=i-1, 并且转到第二步

When the object i is found, the median is:

当对象 i 找到时,中位数是:


 i=0,i=m,j=0,j=ni=0,i=m,j=0,j=n where \text{A}[i-1],\text{B}[j-1],\text{A}[i],\text{B}[j]A[i1],B[j1],A[i],B[j] may not exist. 

 i=0,i=m,j=0,j=ni=0,i=m,j=0,j=n的时候A[i1],B[j1],A[i],B[j] 也许不会存在。

Actually this situation is easier than you think.

事实上这个情形比你想象得要简单。


What we need to do is ensuring that \text{max}(\text{left}\_\text{part}) \leq \text{min}(\text{right}\_\text{part})max(left_part)min(right_part). So, if ii and jj are not edges values (means 

我们需要做的就是确保 
\text{max}(\text{left}\_\text{part}) \leq \text{min}(\text{right}\_\text{part})
max(left_part)min(right_part)
. 因此,如果i 和j 不是边缘值(意味着


\text{A}[i-1], \text{B}[j-1],\text{A}[i],\text{B}[j]A[i1],B[j1],A[i],B[j] all exist), then we must check both \text{B}[j-1] \leq \text{A}[i]B[j1]A[i] and 

A[i1],B[j1],A[i],B[j] 都存在,我们必须检查 \text{B}[j-1] \leq \text{A}[i]B[j1]A[i]和


A[i1]B[j]. But if some of \text{A}[i-1],\text{B}[j-1],\text{A}[i],\text{B}[j]A[i1],B[j1],A[i],B[j] don't exist, 

A[i1]B[j]。但是如果其中一些A[i1],B[j1],A[i],B[j] 不存在的话


then we don't need to check one (or both) of these two conditions. 

然后我们不需要检查两个条件中的其中一个或者全部。


 For example, if i=0i=0, then \text{A}[i-1]A[i1] doesn't exist, then we don't need to check \text{A}[i-1] \leq \text{B}[j]A[i1]B[j]. So, what we need to do is:

举个例子,如果 i=0, 然后  \text{A}[i-1]A[i1]  不存在,我们就不需要检测A[i1]B[j]。 因此,我们需要做的事情就是:

Searching ii in [0, m][0,m], to find an object ii such that:

找到在 [0,m] 中的 i ,找到对象 i 就像:

(j = 0(j=0 or i = mi=m or \text{B}[j-1] \leq \text{A}[i])B[j1]A[i]) and

(j=0 or i = mi=m or \text{B}[j-1] \leq \text{A}[i])B[j1]A[i])并且


(i = 0(i=0 or j = nj=n or \text{A}[i-1] \leq \text{B}[j]),A[i1]B[j]), where j = \frac{m + n + 1}{2} - ij=2m+n+1i

(i=0 or j = nj=n or \text{A}[i-1] \leq \text{B}[j]),A[i1]B[j]),这里  j=(m+n+1)/ 2-i



Thanks to @Quentin.chen for pointing out that:  i<mj>0 and  i>0j<n . Because:

多谢@Quentin.chen 指出:i<mj>0 和 i>0j<n    因为:


i>0j<ni>0j<n
i>0j<n

(我感觉最后一个不等式应该是<=n+(1/2),不过也不影响)


java 代码

class Solution {
    public double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        if (m > n) { // to ensure m<=n
            int[] temp = A; A = B; B = temp;
            int tmp = m; m = n; n = tmp;
        }
        int iMin = 0, iMax = m, halfLen = (m + n + 1) / 2;
        while (iMin <= iMax) {
            int i = (iMin + iMax) / 2;
            int j = halfLen - i;
            if (i < iMax && B[j-1] > A[i]){
                iMin = iMin + 1; // i is too small
            }
            else if (i > iMin && A[i-1] > B[j]) {
                iMax = iMax - 1; // i is too big
            }
            else { // i is perfect
                int maxLeft = 0;
                if (i == 0) { maxLeft = B[j-1]; }
                else if (j == 0) { maxLeft = A[i-1]; }
                else { maxLeft = Math.max(A[i-1], B[j-1]); }
                if ( (m + n) % 2 == 1 ) { return maxLeft; }

                int minRight = 0;
                if (i == m) { minRight = B[j]; }
                else if (j == n) { minRight = A[i]; }
                else { minRight = Math.min(B[j], A[i]); }

                return (maxLeft + minRight) / 2.0;
            }
        }
        return 0.0;
    }
}


python代码

def median(A, B):
    m, n = len(A), len(B)
    if m > n:
        A, B, m, n = B, A, n, m
    if n == 0:
        raise ValueError

    imin, imax, half_len = 0, m, (m + n + 1) / 2
    while imin <= imax:
        i = (imin + imax) / 2
        j = half_len - i
        if i < m and B[j-1] > A[i]:
            # i is too small, must increase it
            imin = i + 1
        elif i > 0 and A[i-1] > B[j]:
            # i is too big, must decrease it
            imax = i - 1
        else:
            # i is perfect

            if i == 0: max_of_left = B[j-1]
            elif j == 0: max_of_left = A[i-1]
            else: max_of_left = max(A[i-1], B[j-1])

            if (m + n) % 2 == 1:
                return max_of_left

            if i == m: min_of_right = B[j]
            elif j == n: min_of_right = A[i]
            else: min_of_right = min(A[i], B[j])

            return (max_of_left + min_of_right) / 2.0


c++代码
class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
      int m=nums1.size();
      int n=nums2.size();
      
      if(m>n)
      {
      vector<int> nums3;
      nums3=nums2;
      nums2=nums1;
      nums1=nums3;
      int temp=m;
      m=n;
      n=temp;
      }

     int imin=0;
      int imax=m;
      int half=(m+n+1)/2;
      while(imin<=imax)
      {
          int i=(imin+imax)/2;
          int j=half-i;
          if( i<imax && nums2[j-1]>nums1[i] )
          {
               imin=imin+1;
          }
         
          else if( i>imin && nums1[i-1]>nums2[j] )
          {
              imax=imax-1;
          }
          else
          {
              int maxleft=0;
              if(i==0)
              {
                  maxleft=nums2[j-1];
              } 
              else  if(j==0)
                  {
                  maxleft=nums1[i-1];
                  }
              else
                 {
                  if(nums1[i-1]>nums2[j-1])
                      maxleft=nums1[i-1];
                  else
                      maxleft=nums2[j-1];
                 }
              if((m+n)%2==1) 
              {

                  return maxleft;
              }
                  
              int minright=0;
              if(i==m) 
              {
                   minright=nums2[j];
              }
                 
              else if(j==n)
              {
                   minright=nums1[i];
              }  
              else 
              {
                  if(nums1[i]<nums2[j])
                  {
                       minright=nums1[i];
                  }
                    
                  else
                  {
                       minright=nums2[j];
                  }
                 
              }
          return (minright+maxleft)/2.0;  
          }
      }        
        return 0.0;  
    }
};
   


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佳悦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值