机器学习
文章平均质量分 96
DRZ_2000
在美丽的北国重镇哈尔滨,有一座神秘院校。。。
展开
-
深度学习之图像隐写去除(DDSP模型 Steganography Removal)
文章目录一 前言一 前言 在前面的文章中我们原创 2021-08-03 15:04:13 · 3585 阅读 · 2 评论 -
SRNet隐写分析网络模型 (pytorch实现)
文章目录一 SRNet隐写分析模型介绍二 SRNet网络概述三 训练结果展示一 SRNet隐写分析模型介绍 SRNet模型是宾汉姆顿大学(Binghamton University)Jessica教授团队于2018年提出的图像隐写分析网络模型,应该说是当时SOTA(state-of-the-art)的隐写分析网络模型了,实验证明不论对空域隐写算法还是JEPG频域隐写算法,SRNet都有较好的检测性能。关于SRNet论文、官方代码和中文翻译分别如下所示:SRNet网络论文地址: https://原创 2021-07-11 17:40:29 · 8339 阅读 · 42 评论 -
机器学习之Gradient Descent 梯度下降理解
文章目录一 前言一 前言 在前一篇文章 机器学习之回归(Regression)再理解 中小编提到了梯度下降,我们知道在设定好损失函数后,只要loss函数是可微分的,我们就可以通过Gradient Descent 进行参数优化,不断的调整参数的值,使得loss函数的值越来越小。...原创 2021-03-10 17:16:09 · 624 阅读 · 1 评论 -
Gradient Descent 背后的数学原理
文章目录一 前言二 泰勒级数展开 Talyor Series三 公式推导四 结束语一 前言 Gradient Descent 大家都耳熟能详,即使是刚接触机器学习不到一周的初学者也早已经听过了梯度下降的大名,让每个人解释什么是Gradient Descent,大家多多少少也能说出来,但是背后的数学推理相信大家很少见到,在这里小编就毛遂自荐,尽自己所能说一说Gradient Descent 的公式是如何推理出来的。在本文中梯度、局部最优、全剧最优、鞍点等等一些基本的知识就不说了,相信大家心中都有大原创 2021-03-10 16:54:29 · 328 阅读 · 0 评论 -
机器学习之回归(Regression)再理解
文章目录一 前言引入1. 回归定义及应用场景2. 解决步骤3. 过拟合和解决方法二 回归问题再理解1. 问题提出2. 问题解决三 结束语一 前言引入1. 回归定义及应用场景 我们知道机器学习的过程其实就是一个找函数的过程,通过不断的训练我们最终得到一个函数映射,给定函数(网络)一个输入,函数(网络)会给出相应输出,若输出的是一个数值(scatter),我们可以将这一类机器学习的问题称为回归问题(Regression)举例如下: 上图中第一个例子为股票指数预测,函数输入为今天的股票数据信息,原创 2021-03-02 21:35:14 · 6694 阅读 · 1 评论