半路算法之Dijkstra——以路由算法的角度进行理解

半路算法之Dijkstra——以路由算法的角度进行理解

前一阵无线传感网络课程(wsn)布置了一项任意语言任意环境实现dijkstra算法的作业。我一琢磨,好啊,之前一直喊着没时间安心搞算法,这次可以作为切入点啊!
不过,真正开始写之后才发现问题重重,自己要提升的地方还有很多。

捧出神器《算法导论》,翻到第六部分图算法中的Dijkstra算法开始研究:

Dijkstra算法解决了有向图G=(V, E)上带权的单源最短路径,且权值不为负。
即是说Dijkstra的适应问题有以下特征:单源、非负权、有向(虽然到现在我也不懂为什么老师给出的图是无向图,按照我的理解是它对无向图同样适用)。
且在尽可能的优化下,Dijkstra算法比Bellman-Ford算法效率高。

先列出算法的伪代码:

initialize-single-source(G, s)
S <- NULL
Q <- V[G]
while Q != NULL
    do 
        u <- extract-min(Q)
        S <- S+{u}
        
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值