数字信号处理(一)绪论

信号分类

模拟信号: 自变量时间在定义域内是连续的,信号的幅度在一定的动态范围内连续取值。

离散时间信号: 自变量时间在定义域内是离散的。离散时间信号可以通过对连续时间信号的采样来获得,或信号本身就是离散时间信号。

数字信号: 时间离散,幅度量化为有限字长二进制数的信号。

模拟信号 -> 离散时间信号 -> 数字信号

模/数转换包括两步:时域采样幅度量化

时域采样定理

模拟信号采样

在这里插入图片描述

时域采样定理推导:

采样信号表示如下:

x ^ a ( t ) = x a ( t ) p δ ( t ) \hat x_a(t)=x_a(t)p_\delta(t) x^a(t)=xa(t)pδ(t) (1) , 其中 p δ ( t ) = ∑ k = − ∞ + ∞ 1 T e j k Ω s t p_\delta(t)=\sum_{k=-\infty}^{+\infty}\frac1Te^{jk\Omega_st} pδ(t)=k=+T1ejkΩst

对(1)式两边分别去傅里叶变换:
X ^ a ( j Ω ) = ∫ − ∞ ∞ x a ( t ) p δ ( t ) d t = ∫ − ∞ ∞ x a ( t ) ∑ k = − ∞ + ∞ 1 T e j k Ω s t e − j Ω t d t \hat X_a(j\Omega)=\int_{-\infty}^{\infty}x_a(t)p_\delta(t)dt=\int_{-\infty}^{\infty}x_a(t)\sum_{k=-\infty}^{+\infty}\frac1Te^{jk\Omega_st}e^{-j\Omega t}dt X^a(jΩ)=xa(t)pδ(t)dt=xa(t)k=+T1ejkΩstejΩtdt

= ∫ − ∞ ∞ x a ( t ) 1 T ∑ k = − ∞ + ∞ e j k Ω s t e − j Ω t d t = 1 T ∫ − ∞ ∞ x a ( t ) ∑ k = − ∞ + ∞ e − j ( Ω − k Ω s ) t d t =\int_{-\infty}^{\infty}x_a(t)\frac1T\sum_{k=-\infty}^{+\infty}e^{jk\Omega_st}e^{-j\Omega t}dt=\frac1T\int_{-\infty}^{\infty}x_a(t)\sum_{k=-\infty}^{+\infty}e^{-j(\Omega-k\Omega_s)t}dt =xa(t)T1k=+ejkΩstejΩtdt=T1xa(t)k=+ej(ΩkΩs)tdt

因 为 ∫ − ∞ ∞ x a ( t ) e − j Ω t d t = X a ( j Ω ) , 所 以 上 式 = 1 T ∑ k = − ∞ + ∞ X a ( j Ω − j k Ω s ) 因为\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt=X_a(j\Omega),所以上式=\frac1T\sum_{k=-\infty}^{+\infty}X_a(j\Omega-jk\Omega_s) xa(t)ejΩtdt=Xa(jΩ),=T1k=+Xa(jΩjkΩs)

因此得到如下图:

在这里插入图片描述

时域采样定理: 对于带宽为 Ω \Omega Ω的带限模拟信号 x a ( t ) x_a(t) xa(t),如果采样频率 Ω s > 2 Ω c \Omega_s>2\Omega_c Ωs>2Ωc,可以从采样信号 x a ′ ( t ) x'_a(t) xa(t)中无失真的恢复出 x a ( t ) x_a(t) xa(t),否则采样信号会发生频谱混叠。

量化

  • 对于一个无限精度十进制数需要用无限位二进制数才能精确表示。但现实中的A/D转换器、寄存器等数据存储器件的存储位数都是有限的,只能用有限字长的二进制数来表示,这就需要进行量化,量化所产生的误差称为量化误差

  • 假设用(b+1)位二进制数表示数字信号,其中第1位是符号位,尾数用b表示,能表示的最小单位称为量化阶q=2。如果二进制的尾数长于b,必须进行尾数处理,将其限制为b位的操作,这就是量化

  • 如果二进制数x被量化,则将引入量化误差e,即e=[x]-x。[x]表示数x的量化值,是x经截尾或舍入后的值。

离散时间信号的序列描述

  • 离散时间信号可视为连续时间信号的采样

  • 若模拟信号为 x a ( t ) x_a(t) xa(t),对它进行以周期为T的等间隔采样,则得到的离散时间信号为:
    x a ( t ) ∣ t = n T = x a ( n T ) = x ( n ) , − ∞ < n < ∞ x_a(t)_{|t=nT} = x_a(nT)=x(n),-∞<n<∞ xa(t)t=nT=xa(nT)=x(n),<n<
    其中 x ( n ) x(n) x(n)称为离散时间信号(数值序列),n取整数

  • 需要强调的是:n只能取整数值

单位采样序列 δ ( n ) = { 1 n = 0 0 n ≠ 0 \delta(n)=\begin{cases}1&{n=0}\\0&{n\neq0}\end{cases} δ(n)={10n=0n=0,单位采样序列又称为单位脉冲序列,其特点是在n=0时取值为1,其它n时刻取值0

单位阶跃序列 u ( n ) = { 1 n ≥ 0 0 n < 0 u(n)=\begin{cases}1&n\geq0\\0&n<0\end{cases} u(n)={10n0n<0

矩形序列 R n = { 1 0 ≤ n ≤ N − 1 0 e l s e R_n=\begin {cases}1&0\leq n\leq N-1\\0&else\end{cases} Rn={100nN1else

序列的基本运算

序列加法:
x ( n ) = x 1 ( n ) + x 2 ( n ) x(n)=x_1(n)+x_2(n) x(n)=x1(n)+x2(n)
序列加法是指把两个序列 x 1 ( n ) x_1(n) x1(n) x 2 ( n ) x_2(n) x2(n)中同序号的序列值逐项对应相加,形成新的序列。

序列乘法:
x ( n ) = x 1 ( n ) x 2 ( n ) x(n)=x_1(n)x_2(n) x(n)=x1(n)x2(n)
序列乘法是指把两个序列 x 1 ( n ) x_1(n) x1(n) x 2 ( n ) x_2(n) x2(n)中同序号的序列值逐项对应相乘,形成新的序列。序列的乘法是一种非线性运算,它用于信号的调制。

序列的倍乘

序列倍乘是指把序列 x ( n ) x(n) x(n)中所有序号下的序列值同乘一个常数a
y ( n ) = a x ( n ) y(n)=ax(n) y(n)=ax(n)
序列移位、翻转以及尺度变换

移位— x ( n − n 0 ) x(n-n_0) x(nn0)

翻转— x ( − n ) x(-n) x(n)

尺度变换— x ( m n ) x(mn) x(mn)

n 0 > 0 n_0>0 n0>0时,序列右移 n 0 n_0 n0个序数,称为x(n)的延时序列

n 0 < 0 n_0<0 n0<0时,序列左移 n 0 n_0 n0个序数,称为x(n)的超前序列

序列绝对值之和

设序列为x(n),则
S x = ∑ n = − ∞ ∞ ∣ x ( n ) ∣ S_x=\sum_{n=-\infty}^{\infty}|x(n)| Sx=n=x(n)
称为序列绝对值之和。如果满足 s x < ∞ s_x<\infty sx<,则x(n)为绝对可和序列

如果一个序列x(n)的每个序列值的绝对值均小于等于某一个有限的正整数 M x M_x Mx,即满足
∣ x ( n ) ∣ ≤ M X < ∞ |x(n)|\leq M_X<\infty x(n)MX<
则称x(n)为有界序列。

序列能量

复数序列x(n)的能量为
E x = ∑ n = − ∞ ∞ ∣ x ( n ) ∣ 2 = ∑ n = − ∞ ∞ x ( n ) x ∗ ( n ) E_x=\sum_{n=-\infty}^{\infty}|x(n)|^2=\sum_{n=-\infty}^{\infty}x(n)x^*(n) Ex=n=x(n)2=n=x(n)x(n)
上标*表示共轭运算

周期序列的平均功率

设x(n)是周期为N的周期序列,则其平均功率
P x = 1 N ∑ n = 0 N − 1 ∣ x ( n ) ∣ 2 P_x=\frac1N\sum_{n=0}^{N-1}|x(n)|^2 Px=N1n=0N1x(n)2

线性系统

当且仅当系统L[.]满足叠加原理时是线性系统

解释:
y 1 ( n ) = L [ x 1 ( n ) ] , y 2 ( n ) = L [ x 2 ( n ) ] ∀ x 1 ( n ) , x 2 ( n ) y_1(n)=L[x_1(n)],y_2(n)=L[x_2(n)] \forall x_1(n),x_2(n) y1(n)=L[x1(n)],y2(n)=L[x2(n)]x1(n),x2(n)
两个属性:

(1)可加性 L [ x 1 ( n ) + x 2 ( n ) ] = L [ x 1 ( n ) ] + L [ x 2 ( n ) ] ∀ x 1 ( n ) , x 2 ( n ) L[x_1(n)+x_2(n)]=L[x_1(n)]+L[x_2(n)] \forall x_1(n),x_2(n) L[x1(n)+x2(n)]=L[x1(n)]+L[x2(n)]x1(n),x2(n)

(2)齐次性 L [ a 1 x 1 ( n ) ] = a 1 L [ x 1 ( n ) ] ∀ a 1 , x 1 ( n ) L[a_1x_1(n)]=a_1L[x_1(n)] \forall a_1,x_1(n) L[a1x1(n)]=a1L[x1(n)]a1,x1(n)

叠加原理:(1)+(2)即是叠加原理
T [ a x 1 ( n ) + b x 2 ( n ) ] = a T [ x 1 ( n ) ] + b T [ x 2 ( n ) ] = a y 1 ( n ) + b y 2 ( n ) , ∀ a 1 , a 2 , x 1 ( n ) , x 2 ( n ) T[ax_1(n)+bx_2(n)]=aT[x_1(n)]+bT[x_2(n)]=ay_1(n)+by_2(n),\forall a_1,a_2,x_1(n),x_2(n) T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]=ay1(n)+by2(n),a1,a2,x1(n),x2(n)

时不变系统

如果系统对于输入信号的响应与信号加于系统的时间无关,则称该系统为时不变系统

即,如果 y ( n ) = T [ x ( n ) ] y(n)=T[x(n)] y(n)=T[x(n)],若对于任意整数 n 0 n_0 n0,时不变系统一定满足 y ( n − n 0 ) = T [ x ( n − n 0 ) ] y(n-n_0)=T[x(n-n_0)] y(nn0)=T[x(nn0)]

线性时不变系统

如果线性系统对输入序列的运算关系L[.]在整个运算过程中不随时间变化,则称为线性时不变(LTI)系统

线性卷积

y ( n ) = x ( n ) ∗ h ( n ) = ∑ m = − ∞ ∞ x ( m ) h ( n − m ) y(n)=x(n)*h(n)=\sum_{m=-\infty}^{\infty}x(m)h(n-m) y(n)=x(n)h(n)=m=x(m)h(nm)

  • 将x(n)和h(n)用x(m)和h(m)表示,并将h(m)进行翻转,形成h(-m)

  • 将h(-m)移位n,得到h(n-m)

    n>0时,序列右移

    n<0时,序列左移

  • 将x(m)和h(n-m)对应项相乘相加得到y(n)

线性卷积服从:

交换律: x ( n ) ∗ h ( n ) = h ( n ) ∗ x ( n ) x(n)*h(n)=h(n)*x(n) x(n)h(n)=h(n)x(n)

结合律: x ( n ) ∗ [ h 1 ( n ) ∗ h 2 ( n ) ] = [ x ( n ) ∗ h 1 ( n ) ] ∗ h 2 ( n ) x(n)*[h_1(n)*h_2(n)]=[x(n)*h_1(n)]*h_2(n) x(n)[h1(n)h2(n)]=[x(n)h1(n)]h2(n)

分配律: x ( n ) ∗ [ h 1 ( n ) + h 2 ( n ) ] = x ( n ) ∗ h 1 ( n ) + x ( n ) ∗ h 2 ( n ) x(n)*[h_1(n)+h_2(n)]=x(n)*h_1(n)+x(n)*h_2(n) x(n)[h1(n)+h2(n)]=x(n)h1(n)+x(n)h2(n)

线性常系数差分方程

一个N阶线性常系数差分方程用下式表示:
y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ k = 1 N a k y ( n − k ) y(n)=\sum_{i=0}^Mb_ix(n-i)-\sum_{k=1}^Na_ky(n-k) y(n)=i=0Mbix(ni)k=1Naky(nk)

或 者 ∑ i = 0 M b i x ( n − i ) = ∑ k = 0 N a k y ( n − k ) , a 0 = 1 或者\sum_{i=0}^Mb_ix(n-i)=\sum_{k=0}^Na_ky(n-k),a_0=1 i=0Mbix(ni)=k=0Naky(nk),a0=1

式中 a k a_k ak b i b_i bi均为常数

线性: 式中y(n-k)和x(n-i)项只有一次幂,也没有相互交叉项,故称为线性常系数差分方程

阶数: 由方程y(n-k)项中k的取值最大与最小之差确定。式中,y(n-k)项k最大的取值为N,k的最小取值为零,因此称为N阶差分方程。

对于线性差分方程,可以通过递推法求解

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值