数字信号处理(四)离散傅里叶变换


离散傅里叶变换(DFT)是在时域和频域都离散的,有限长序列的DFT仍然是有限长序列

离散傅里叶级数

离散傅里叶级数的定义

离散傅里叶级数:可计算周期序列的离散频率

实际中大多数信号具有有限持续时间。设x(n)是长度为N的有限长序列,以N为周期对x(n)进行延拓得周期序列 x ~ ( n ) , x ~ ( n ) \tilde{x}(n),\tilde{x}(n) x~(n)x~(n)的离散傅里叶级数(DFS)为 X ~ ( k ) \tilde X(k) X~(k)

DFS变换对:
X ~ ( k ) = D F S [ x ~ ( n ) ] = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π N k n \tilde X(k)=DFS[\tilde x(n)]=\sum_{n=0}^{N-1}\tilde x(n)e^{-j\frac{2\pi}Nkn} X~(k)=DFS[x~(n)]=n=0N1x~(n)ejN2πkn

x ~ ( n ) = I D F S [ X ~ ( k ) ] = 1 N ∑ k = 0 N − 1 X ~ ( k ) e j 2 π N k n \tilde x(n)=IDFS[\tilde X(k)]=\frac1N\sum_{k=0}^{N-1}\tilde X(k)e^{j\frac{2\pi}Nkn} x~(n)=IDFS[X~(k)]=N1k=0N1X~(k)ejN2πkn

x ~ ( n ) 和 X ~ ( k ) \tilde x(n)和\tilde X(k) x~(n)X~(k)都是以N为周期的序列

  • x(n)是长度为N的有限长序列, x ~ ( n ) \tilde x(n) x~(n)是x(n)的周期延拓

    x ~ ( n ) = ∑ l = − ∞ ∞ x ( n + l N ) \tilde x(n)=\sum_{l=-\infty}^{\infty}x(n+lN) x~(n)=l=x(n+lN)

  • x(n)是 x ~ ( n ) \tilde x(n) x~(n)的主值序列

    x ( n ) = x ~ ( n ) R N ( n ) x(n)=\tilde x(n)R_N(n) x(n)=x~(n)RN(n)

  • x ( ( n ) ) N x((n))_N x((n))N表示将x(n)以N为周期进行周期延拓

    x ~ ( n ) = x ( ( n ) ) N \tilde x(n)=x((n))_N x~(n)=x((n))N

离散傅里叶级数与Z变换的关系

在这里插入图片描述

DFS X ~ ( k ) \tilde X(k) X~(k)等价于在Z变换X(z)的单位圆上进行N次等间隔采样的结果

离散傅里叶级数与DTFT变换的关系

在这里插入图片描述

w 1 = 2 π N , a n d w k = 2 π N k = k w 1 w_1=\frac{2\pi}N,and w_k=\frac{2\pi}Nk=kw_1 w1=N2π,andwk=N2πk=kw1

那么 X ~ ( k ) = X ( e e j w k ) = X ( e j k w 1 ) \tilde X(k)=X(e^{e^{jw_k}})=X(e^{jkw_1}) X~(k)=X(eejwk)=X(ejkw1)

DFS等价于对DTFT变换的结果以 w 1 w_1 w1为间隔进行采样

离散傅里叶级数的性质

1、线性

D F S [ a x ~ ( n ) + b y ~ ( n ) ] = a X ~ ( k ) + b Y ~ ( k ) DFS[a\tilde x(n)+b\tilde y(n)]=a\tilde X(k)+b\tilde Y(k) DFS[ax~(n)+by~(n)]=aX~(k)+bY~(k)

时域、频域线性组合的序列也都是以N为周期

2、序列的移位

W N = e − j 2 π N W_N=e^{-j\frac{2\pi}N} WN=ejN2π

D F S [ x ~ ( n + n 0 ) ] = W N − k n 0 X ~ ( k ) DFS[\tilde x(n+n_0)]=W_N^{-kn_0}\tilde X(k) DFS[x~(n+n0)]=WNkn0X~(k)

3、圆周卷积定理

如果 F ~ ( k ) = X ~ ( k ) Y ~ ( k ) \tilde F(k)=\tilde X(k)\tilde Y(k) F~(k)=X~(k)Y~(k)周期都是N
f ~ ( n ) = I D F S [ F ~ ( k ) ] = ∑ m = 0 N − 1 x ~ ( m ) y ~ ( n − m ) \tilde f(n)=IDFS[\tilde F(k)]=\sum_{m=0}^{N-1}\tilde x(m)\tilde y(n-m) f~(n)=IDFS[F~(k)]=m=0N1x~(m)y~(nm)
和有限长度的非周期序列的线性卷积不同,这里 x ~ ( m ) 和 y ~ ( n − m ) \tilde x(m)和\tilde y(n-m) x~(m)y~(nm)都是变量m的周期函数,周期为N。卷积过程仅限于一个周期内,即m=0~N-1。

卷积结果 f ~ ( n ) \tilde f(n) f~(n)仍然是周期为N的周期序列

圆周卷积满足交换律

f ~ ( n ) = ∑ m = 0 N − 1 y ~ ( m ) m ~ ( n − m ) \tilde f(n)=\sum_{m=0}^{N-1}\tilde y(m)\tilde m(n-m) f~(n)=m=0N1y~(m)m~(nm)

离散傅里叶变换

离散傅里叶变换(DFT)的定义

由于x(n)是 x ~ ( n ) \tilde x(n) x~(n)的主值序列,所以取 X ~ ( k ) \tilde X(k) X~(k)的主值序列X(k)作为x(n)的频谱。这就产生了一种新的变换,称为有限长序列的离散傅里叶变换DFT

在这里插入图片描述

有限长序列x(n)的DFT:
X ( k ) = D F T [ x ( n ) ] = ∑ n = 0 N − 1 x ( n ) e − j 2 π N k n , k = 0 , 1 , . . . , N − 1 X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}Nkn},k=0,1,...,N-1 X(k)=DFT[x(n)]=n=0N1x(n)ejN2πkn,k=0,1,...,N1

x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N k n , n = 0 , 1 , . . . , N − 1 x(n)=IDFT[X(k)]=\frac1N\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi}Nkn},n=0,1,...,N-1 x(n)=IDFT[X(k)]=N1k=0N1X(k)ejN2πkn,n=0,1,...,N1

N称为离散傅里叶变换的变换区间长度

一个例子:

在这里插入图片描述
在这里插入图片描述

DFT的矩阵表示

在这里插入图片描述

DFT和Z变换及DTFT的关系

DFT和ZT的关系: X ( k ) = X ( z ) ∣ z = e j 2 π N k , 0 ≤ k ≤ N − 1 X(k)=X(z)_{|z=e^{j\frac{2\pi}Nk}},0\leq k \leq N-1 X(k)=X(z)z=ejN2πk,0kN1

DFT和DTFT的关系: X ( k ) = X ( e j w ) ∣ w = 2 π N k , 0 ≤ k ≤ N − 1 X(k)=X(e^{jw})_{|w={\frac{2\pi}Nk}},0\leq k \leq N-1 X(k)=X(ejw)w=N2πk,0kN1

  • 序列的N点DFT是序列的Z变换在单位圆上的N点等间隔采样。
  • 序列的N点DFT是序列的离散时间傅里叶变换(DTFT)在[0, 2 π 2\pi 2π)区间上的N点等间隔采样。
  • 序列的DFT是对序列频谱函数的等间隔离散抽取,称为频率采样
  • DFT变换区间长度N的不同,表示在频域采样的采样间隔和采样点数不同,因而DFT的变换结果就不同。

频域采样定理

如果序列x(n)的长度为M,则只有当频域采样点数N≥M使,才有 X N ( n ) = I D F T [ X ( k ) ] = x ( n ) X_N(n)=IDFT[X(k)]=x(n) XN(n)=IDFT[X(k)]=x(n)

即可由频域采样X(k)恢复序列x(n),否则产生时域混叠现象

内插公式和内插函数

序列的Z变换和DTFT可以由序列的DFT确定
X ( z ) = ∑ k = 0 N − 1 X ( k ) ϕ k ( z ) , 其 中 ϕ k ( z ) = 1 N 1 − z − N 1 − e j 2 π N k z − 1 X(z)=\sum_{k=0}^{N-1}X(k)\phi_k(z),其中\phi_k(z)=\frac1N\frac{1-z^{-N}}{1-e^{j\frac{2\pi}Nk}z^{-1}} X(z)=k=0N1X(k)ϕk(z),ϕk(z)=N11ejN2πkz11zN

X ( e j w ) = ∑ k = 0 N − 1 X ( k ) ϕ k ( w ) , 其 中 ϕ k ( w ) = 1 N 1 − e − j w N 1 − e − j ( w − 2 π k / N ) X(e^{jw})=\sum_{k=0}^{N-1}X(k)\phi_k(w),其中\phi_k(w)=\frac1N\frac{1-e^{-jwN}}{1-e^{-j(w-2\pi k/N)}} X(ejw)=k=0N1X(k)ϕk(w),ϕk(w)=N11ej(w2πk/N)1ejwN

证明推导:

设序列x(n)长度为M,在频域0~2 π \pi π之间等间隔采样N点,N≥M,则有:

X ( z ) = ∑ n = 0 N − 1 x ( n ) z − n X(z)=\sum_{n=0}^{N-1}x(n)z^{-n} X(z)=n=0N1x(n)zn

式中 x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N k n x(n)=IDFT[X(k)]=\frac1N\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi}Nkn} x(n)=IDFT[X(k)]=N1k=0N1X(k)ejN2πkn

代入X(z)的表达式中得
X ( z ) = ∑ n = 0 N − 1 [ 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N k n ] z − n = 1 N ∑ k = 0 N − 1 X ( k ) ∑ n = 0 N − 1 e j 2 π N k n z − n X(z)=\sum_{n=0}^{N-1}[\frac1N\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi}Nkn}]z^{-n}=\frac1N\sum_{k=0}^{N-1}X(k)\sum_{n=0}^{N-1}e^{j\frac{2\pi}Nkn}z^{-n} X(z)=n=0N1[N1k=0N1X(k)ejN2πkn]zn=N1k=0N1X(k)n=0N1ejN2πknzn

= 1 N ∑ k = 0 N − 1 X ( k ) 1 − e j 2 π N z − N 1 − e j 2 π N k z − 1 =\frac1N\sum_{k=0}^{N-1}X(k)\frac{1-e^{j2\pi N}z^{-N}}{1-e^{j\frac{2\pi}Nk}z^{-1}} =N1k=0N1X(k)1ejN2πkz11ej2πNzN

因为 e j 2 π N = 1 e^{j2\pi N}=1 ej2πN=1,因此
X ( z ) = 1 N ∑ k = 0 N − 1 X ( k ) 1 − z − N 1 − e j 2 π N k z − 1 X(z)=\frac1N\sum_{k=0}^{N-1}X(k)\frac{1-z^{-N}}{1-e^{j\frac{2\pi}Nk}z^{-1}} X(z)=N1k=0N1X(k)1ejN2πkz11zN
ϕ k ( z ) = 1 N 1 − z − N 1 − e j 2 π N k z − 1 ( 1.1 ) \phi_k(z)=\frac1N\frac{1-z^{-N}}{1-e^{j\frac{2\pi}Nk}z^{-1}} (1.1) ϕk(z)=N11ejN2πkz11zN(1.1)

X ( z ) = ∑ k = 0 N − 1 X ( k ) ϕ k ( z ) ( 1.2 ) X(z)=\sum_{k=0}^{N-1}X(k)\phi_k(z)(1.2) X(z)=k=0N1X(k)ϕk(z)(1.2)

式(1.2)称为用X(k)表示X(z)的内插公式 ϕ k ( z ) \phi_k(z) ϕk(z)称为内插函数

z = e j w z=e^{jw} z=ejw时,上式就成为x(n)的DTFT X ( e j w ) X(e^{jw}) X(ejw)的内插函数和内插公式,即

ϕ k ( w ) = 1 N 1 − e − j w N 1 − e − j ( w − 2 π k / N ) \phi_k(w)=\frac1N\frac{1-e^{-jwN}}{1-e^{-j(w-2\pi k/N)}} ϕk(w)=N11ej(w2πk/N)1ejwN

X ( e j w ) = ∑ k = 0 N − 1 X ( k ) ϕ k ( w ) X(e^{jw})=\sum_{k=0}^{N-1}X(k)\phi_k(w) X(ejw)=k=0N1X(k)ϕk(w)

离散傅里叶变换的性质

1、DFT隐含的周期性
X ( k ) = D F T [ x ( n ) ] = ∑ n = 0 N − 1 x ( n ) e − j 2 π N k n , k = 0 , 1 , . . . , N − 1 X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}Nkn},k=0,1,...,N-1 X(k)=DFT[x(n)]=n=0N1x(n)ejN2πkn,k=0,1,...,N1

x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N k n , n = 0 , 1 , . . . , N − 1 x(n)=IDFT[X(k)]=\frac1N\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi}Nkn},n=0,1,...,N-1 x(n)=IDFT[X(k)]=N1k=0N1X(k)ejN2πkn,n=0,1,...,N1

DFT变换对中,x(n)与X(k)均为有限长序列, W N k n ( W N = e − j 2 π N ) W_N^{kn}(W_N=e^{-j\frac{2\pi}N}) WNkn(WN=ejN2π)具有周期性,
W N k = W N k + m N , k , m , N 均 为 正 数 W_N^k=W_N^{k+mN},k,m,N均为正数 WNk=WNk+mN,k,m,N
使得对任意整数m,总有 X ( k + m N ) = ∑ n = 0 N − 1 x ( n ) W N ( k + m N ) n = ∑ n = 0 N − 1 x ( n ) W N k n = X ( k ) X(k+mN)=\sum_{n=0}^{N-1}x(n)W_N^{(k+mN)n}=\sum_{n=0}^{N-1}x(n)W_N^{kn}=X(k) X(k+mN)=n=0N1x(n)WN(k+mN)n=n=0N1x(n)WNkn=X(k)

所以X(k)具有隐含的周期性,且周期均为N。同理, x ( n + m N ) = x ( n ) x(n+mN)=x(n) x(n+mN)=x(n)

2、线性性质

如果 x 1 ( n ) 和 x 2 ( n ) x_1(n)和x_2(n) x1(n)x2(n)是两个有限长序列,长度分别为 N 1 和 N 2 N_1和N_2 N1N2 y ( n ) = a x 1 ( n ) + b x 2 ( n ) y(n)=ax_1(n)+bx_2(n) y(n)=ax1(n)+bx2(n)

式中a、b为常数,取 N = m a x [ N 1 , N 2 ] N=max[N_1,N_2] N=max[N1,N2],则y(n)的N点DFT为

Y ( k ) = D F T [ y ( n ) ] = a X 1 ( k ) + b X 2 ( k ) , 0 ≤ k ≤ N − 1 Y(k)=DFT[y(n)]=aX_1(k)+bX_2(k),0\leq k\leq N-1 Y(k)=DFT[y(n)]=aX1(k)+bX2(k),0kN1

其 中 X 1 ( k ) 和 X 2 ( k ) 分 别 是 x 1 ( n ) 和 x 2 ( n ) 的 N 点 D F T 其中X_1(k)和X_2(k)分别是x_1(n)和x_2(n)的N点DFT X1(k)X2(k)x1(n)x2(n)NDFT

3、循环移位性质

**序列的循环移位:**设x(n)为有限长序列,长度为N,则x(n)的循环移位定义为 y ( n ) = x ( ( n + m ) ) N R N ( N ) y(n)=x((n+m))_NR_N(N) y(n)=x((n+m))NRN(N)

①时域循环移位定理

设x(n)是长度为N的有限长序列,y(n)为x(n)的循环移位,即 y ( n ) = x ( ( n + m ) ) N R N ( N ) y(n)=x((n+m))_NR_N(N) y(n)=x((n+m))NRN(N)

Y ( k ) = D F T [ y ( n ) ] = W N − k m X ( k ) Y(k)=DFT[y(n)]=W_N^{-km}X(k) Y(k)=DFT[y(n)]=WNkmX(k)

其中 X ( k ) = D F T [ x ( n ) ] , 0 ≤ k ≤ N − 1 X(k)=DFT[x(n)],0\leq k\leq N-1 X(k)=DFT[x(n)],0kN1

证明:
Y ( k ) = ∑ n = m N − 1 x ( n ) e − j 2 π N k ( n − m ) + ∑ n = 0 m − 1 x ( n ) e − j 2 π N k ( n + N − m ) Y(k)=\sum_{n=m}^{N-1}x(n)e^{-j\frac{2\pi}Nk(n-m)}+\sum_{n=0}^{m-1}x(n)e^{-j\frac{2\pi}Nk(n+N-m)} Y(k)=n=mN1x(n)ejN2πk(nm)+n=0m1x(n)ejN2πk(n+Nm)

= ∑ n = m N − 1 x ( n ) e − j 2 π N k ( n − m ) + ∑ n = 0 m − 1 x ( n ) e − j 2 π N k ( n − m ) ∗ e − j 2 π k =\sum_{n=m}^{N-1}x(n)e^{-j\frac{2\pi}Nk(n-m)}+\sum_{n=0}^{m-1}x(n)e^{-j\frac{2\pi}Nk(n-m)}*e^{-j2\pi k} =n=mN1x(n)ejN2πk(nm)+n=0m1x(n)ejN2πk(nm)ej2πk

因为 e − j 2 π k = 1 e^{-j2\pi k}=1 ej2πk=1,所以
Y ( k ) = ∑ n = 0 N − 1 x ( n ) e − j 2 π N k ( n − m ) = e j 2 π N K m X ( k ) = W N − k m X ( k ) Y(k)=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}Nk(n-m)}=e^{j\frac{2\pi}NKm}X(k)=W_N^{-km}X(k) Y(k)=n=0N1x(n)ejN2πk(nm)=ejN2πKmX(k)=WNkmX(k)
②频域循环移位定理

如果 X ( k ) = D F T [ x ( n ) ] , 0 ≤ k ≤ N − 1 , Y ( k ) = X ( ( k + l ) ) N R N ( k ) X(k)=DFT[x(n)],0\leq k\leq N-1,Y(k)=X((k+l))_NR_N(k) X(k)=DFT[x(n)],0kN1,Y(k)=X((k+l))NRN(k)

y ( n ) = I D F T [ Y ( k ) ] = W N n l x ( n ) y(n)=IDFT[Y(k)]=W_N^{nl}x(n) y(n)=IDFT[Y(k)]=WNnlx(n)

③循环卷积定理

有限长序列 x 1 ( n ) 和 x 2 ( n ) x_1(n)和x_2(n) x1(n)x2(n),长度分别为 N 1 和 N 2 N_1和N_2 N1N2 N = m a x [ N 1 , N 2 ] N=max[N_1,N_2] N=max[N1,N2] x 1 ( n ) 和 x 2 ( n ) x_1(n)和x_2(n) x1(n)x2(n)的N点DFT分别为:

X 1 ( k ) = D F T [ x 1 ( n ) ] , X 2 ( k ) = D F T [ x 2 ( n ) ] X_1(k)=DFT[x_1(n)],X_2(k)=DFT[x_2(n)] X1(k)=DFT[x1(n)],X2(k)=DFT[x2(n)]

如果 X ( k ) = X 1 ( k ) ⋅ X 2 ( k ) X(k)=X_1(k)\cdot X_2(k) X(k)=X1(k)X2(k)

x ( n ) = I D F T [ X ( k ) ] = ∑ m = 0 N − 1 x 1 ( m ) x 2 ( ( n − m ) ) N R N ( n ) x(n)=IDFT[X(k)]=\sum_{m=0}^{N-1}x_1(m)x_2((n-m))_NR_N(n) x(n)=IDFT[X(k)]=m=0N1x1(m)x2((nm))NRN(n)

x ( n ) = x 1 ( n ) ⨂ x 2 ( n ) x(n)=x_1(n)\bigotimes x_2(n) x(n)=x1(n)x2(n)

循环卷积的计算: x 2 ( m ) x_2(m) x2(m)循环翻转,循环移位,与 x 1 ( m ) x_1(m) x1(m)对应项相乘相加

循环卷积满足交换律: x 1 ( n ) ⨂ x 2 ( n ) = x 2 ( n ) ⨂ x 1 ( n ) x_1(n)\bigotimes x_2(n)=x_2(n)\bigotimes x_1(n) x1(n)x2(n)=x2(n)x1(n)

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值