ArcGIS教程:地统计模拟的重要概念

本文介绍了地统计模拟的概念,特别是高斯地统计模拟(GGS),它在复制数据地统计特性的同时增加局部变异性。GGS优于克里金法,适合不确定性分析和风险评估。通过条件和非条件模拟,GGS能够生成多个等概率的表面,用于衡量未采样位置的不确定性。在实际应用中,GGS常用于对不符合正态分布的数据进行正态变换后再模拟,从而得到模拟输出。
摘要由CSDN通过智能技术生成

  模拟概念

  模拟在广义上是指使用模型复制现实的过程。在地统计中,模拟是随机函数(表面)的实现,其与生成该模拟的样本数据拥有相同的地统计要素(使用均值、方差和半变异函数来度量)。更具体地说,高斯地统计模拟 (GGS) 适用于连续数据,并假设数据或数据的变换具有正态(高斯)分布。GGS 所依托的主要假设是数据是静态的 - 均值、方差和空间结构(半变异函数)在数据空间域上不发生改变。GGS 的另一个主要假设是建模的随机函数为多元高斯随机函数。

  同克里金法相比,GGS 具有优势。由于克里金法是基于数据的局部平均值的,因此,其可生成平滑的输出。另一方面,GGS 生成的局部变异性的制图表达比较好,因为 GGS 将克里金法中丢失的局部变异性重新添加到了其生成的表面中。对于由 GGS 实现添加到特定位置的预测值中的变异性,其平均值为零,这样,很多 GGS 实现的平均值会趋向于克里金预测。下图对此概念进行了说明。各种实现以一组堆叠输出图层的形式表示出来,并且特定坐标位置的值服从高斯分布,其平均值等于该位置的克里金估计值,而扩散程度则由该位置上的克里金法方差给出。

  

  提取值到表工具可以用来为上图中的图形生成数据,在对 GGS 生成的输出进行后处理时该工具也很有用。

  对 GGS 的使用在地统计实际操作中日益呈现出一种趋势,它不是追求获得每个未采样位置的最佳无偏预测结果(正如克里金法所体现的),而是强调对决策分析和风险分析的不确定性的特证描述,这样更适合于呈现数据中的全局趋势 (Deu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值