Python:条件分支 if 语句全讲解

如果我拿出下面的代码,阁下该做何应对?

if not reset_excuted and (terminated or truncated):
	...
else:
    ...

前言:

消化论文代码的时候看到这个东西直接大脑冻结,没想过会在这么基础的东西上犯难

运算符优先级

在 Python 中,布尔运算符的优先级从高到低的顺序如下:

  1. 括号 ():最高优先级,可以用于明确运算顺序。

  2. not:次高优先级。

  3. and:次低优先级。

  4. or:最低优先级。

优先级解析示例

示例 1: 使用括号

a = True
b = False
c = True

result = (a and not b) or c

在这个例子中:

  1. 括号 首先被计算:a and not b 中 not b 计算为 not False,结果为 True。然后,True and True 计算为 True

  2. 最后,整体表达式变为 True or c,结果是 True

示例 2: 不使用括号

x = False
y = True
z = False

result = x or y and not z

在这个例子中:

  1. 优先级 按照 not > and > ornot z 计算为 not False,结果是 True

  2. 然后表达式转为 x or y and True

  3. 接着 y and True 计算为 True

  4. 最终计算为 x or True,结果是 True

复杂示例

p = True
q = False
r = False

result = not (p and q) or r

在这个示例中:

  1. 括号 首先被计算:p and q 计算为 True and False,结果是 False

  2. 然后,not False 计算为 True

  3. 最终表达式变为 True or r,结果是 True


复杂if语句判断

在表达式 if not a and b 中,not 只对 a 生效,不影响 b

  • not 的优先级高于 and,这意味着它会先处理 a 的值。

  • 首先计算 not a,这将返回 a 的布尔值的相反值。

  • 然后,使用 and 运算符将结果与 b 进行比较。

if not para_A and (para_B or para_C):
    print("进入上面的分支")
else:
    print("进入下面的分支")

回到开头的示例,细细的捋一捋,在这段代码中:

在这里,not只对para_A生效,而不对(para_B or para_C)生效

要推算在什么情况下进入上面的分支或下面的分支,可以分析条件的每个部分。

分析条件

  1. not para_A:要求 para_A 为 False

    这意味着要进入上面的分支,para_A 必须是 False

  2. (para_B or para_C):要求 para_B 或 para_C 至少有一个为 True

    这意味着只要 para_B 为 True 或 para_C 为 True,这个部分就成立。

进入上面的分支的条件

整体条件为 not para_A and (para_B or para_C),因此要进入上面的分支,必须满足以下条件:

  • 条件 1para_A 是 False

  • 条件 2para_B 是 True 或 para_C 是 True(至少有一个为 True)。

进入下面的分支的条件

为了进入下面的分支,条件需要不成立,即:

  1. 条件 Apara_A 是 True

    这时 not para_A 为 False,条件就不成立。

  2. 条件 Bpara_A 是 False,但 para_B 和 para_C 都是 False

    这时 (para_B or para_C) 为 False,条件也不成立。

总结条件表

结论

  • 进入上面的分支:当 para_A 为 False,且 para_B 或 para_C 至少有一个为 True

  • 进入下面的分支:当 para_A 为 True 或者 para_A 为 False,但 para_B 和 para_C 都为 False


多分支语句elif

都写那么多了,干脆再补点东西显得更完整吧

在 Python 中,elif 是 “else if” 的缩写,用于在 if 语句中进行多重条件判断。它允许你在第一个 if 条件为 False 的情况下继续检查其他条件,从而实现更多的分支逻辑。

if condition1:
    # 当 condition1 为 True 时执行的代码
elif condition2:
    # 当 condition1 为 False 且 condition2 为 True 时执行的代码
elif condition3:
    # 当 condition1 和 condition2 都为 False 且 condition3 为 True 时执行的代码
else:
    # 当上面的所有条件都为 False 时执行的代码

德摩根定律

在j实际代码应用中,你基本用不上这个定律,上面的东西已经可以解决绝大部分问题了。但如果程序非要在if条件语句上向你发难,至少你也知道怎么应对

德摩根定律是布尔代数中的两个重要定律,它们提供了关于逻辑运算(与、或和非)之间关系的重要公式。这两个定律如下:

第一条定律

not(A or B)≡notA and notB

解释:否定 A 或 B 相当于 A 和 B 的否定相与。

第二条定律

not(A and B)≡notA or notB

解释:否定 A 且 B 相当于 A 的否定或 B 的否定。

举例说明

我们可以通过几个示例来理解这些定律:

示例 1:第一条定律

考虑 A = True 和 B = False

  • 计算 not(A or B)A or B 是 Truenot(A or B) 是 False

  • 计算 not A and not Bnot A 是 Falsenot B 是 Truenot A and not B 是 False

结果是一致的:not(A or B) = False 和 not A and not B = False

示例 2:第二条定律

考虑 A = True 和 B = False

  • 计算 not(A and B)A and B 是 Falsenot(A and B) 是 True

  • 计算 not A or not Bnot A 是 Falsenot B 是 Truenot A or not B 是 True

同样,结果是相等的:not(A and B) = True 和 not A or not B = True

文章转载自:El Psy Kongroo!

原文链接:https://www.cnblogs.com/hassle/p/18456599

体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值