J-xay loves Floyd
题目
题目大意:xay在网上参加比赛,当他看到一道题时,他想了0.1秒思考,然后很快打出了floyd算法.但他写错了:
正确伪代码:
for k=1 to n
for i=1 to n
for j=1 to n
dis[i][j] =min(dis[i][j],dis[i][k]+dis[k][j])
xay的伪代码:
for i=1 to n
for j=1 to n
for k=1 to n
dis[i][j] =min(dis[i][j],dis[i][k]+dis[k][j])
现在问你xay的代码有多少组点的最小距离是正确的.
输入描述:
题目有多组输入.
每组数据会先输入n,m.n代表总共的点数,m代表单向边的数量.接下来m行每行有三个数字u,v,w.代表点u到点v的边权为w.
思路
虽然这题中提到了floyd这个算法,但是O(n3)的时间复杂度对于这题的数据来说并不友好,所以必须采用Dijkstra算法或是剪枝.又因为xay的错误代码无法用Dijkstra算法来计算,所以在计算正确答案时使用Dijkstra算法,在计算xay的答案时进行剪枝.
以下几种情况需要剪枝(具体见代码):
1.当点i无法到达点j时.
2.当i=j时.
3.当点i和点j相连时.
代码实现
#include<iostream>
#include<queue>
#include<vector>
#include<string.h>
using namespace std;
struct node{
int v,w;
node(int v=0,int w=0):v(v),w(w){}
friend bool operator<(const node &a,const node &b){
return a.w>b.w;
}
};
vector<node> ve[2010];
vector<int> ve2[5010];
int n,m,dis[2010][2010],dis2[2010][2010];
bool vis[2010];
void dij(int s,int e){
priority_queue<node> q;
dis[s][s]=0;
q.push(node(s,dis[s][s]));
while(!q.empty()){
int u=q.top().v;
q.pop();
vis[u]=1;
for(int i=0;i<ve[u].size();i++){
int vv=ve[u][i].v,w=ve[u][i].w;
if(vis[vv])continue;
if(dis[s][vv]>dis[s][u]+w){
dis[s][vv]=dis[s][u]+w;
q.push(node(vv,dis[s][vv]));
}
}
}
}
int main(){
memset(dis,0x3f3f3f3f,sizeof(dis));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
ve[u].push_back(node(v,w));
}
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
dij(i,n);
}
int ans=0;
for(int i=1;i<=n;i++)
for(int j=0;j<ve[i].size();j++){
if(dis[i][ve[i][j].v]==ve[i][j].w){
dis2[i][ve[i][j].v]=1;
ve2[i].push_back(ve[i][j].v);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i==j||dis[i][j]==0x3f3f3f3f||dis2[i][j]){
ans++;
}
else{
for(int k=0;k<ve2[i].size();k++){
if(dis2[ve2[i][k]][j]&&dis[i][j]==dis[i][ve2[i][k]]+dis[ve2[i][k]][j]){
ans++;
ve2[i].push_back(j);
dis2[i][j]=1;
break;
}
}
}
}
}
printf("%d\n",ans);
}