J-xay loves Floyd_2021牛客暑期多校训练营7

本文介绍了如何处理一个关于Floyd算法错误的问题,以及在解决这个问题时如何利用Dijkstra算法进行优化。博客指出,由于Floyd算法在特定数据规模下效率不高,因此采用了Dijkstra算法作为替代,并给出了剪枝策略,包括无法到达的点、相同点和已连接点的处理。同时,提供了代码实现,展示了如何计算正确和错误答案中正确的点对数量。
摘要由CSDN通过智能技术生成

J-xay loves Floyd

题目

题目大意:xay在网上参加比赛,当他看到一道题时,他想了0.1秒思考,然后很快打出了floyd算法.但他写错了:
正确伪代码:
for k=1 to n
     for i=1 to n
           for j=1 to n
                  dis[i][j] =min(dis[i][j],dis[i][k]+dis[k][j])
xay的伪代码:
for i=1 to n
      for j=1 to n
            for k=1 to n
                  dis[i][j] =min(dis[i][j],dis[i][k]+dis[k][j])
现在问你xay的代码有多少组点的最小距离是正确的.
输入描述:
题目有多组输入.
每组数据会先输入n,m.n代表总共的点数,m代表单向边的数量.接下来m行每行有三个数字u,v,w.代表点u到点v的边权为w.

思路

虽然这题中提到了floyd这个算法,但是O(n3)的时间复杂度对于这题的数据来说并不友好,所以必须采用Dijkstra算法或是剪枝.又因为xay的错误代码无法用Dijkstra算法来计算,所以在计算正确答案时使用Dijkstra算法,在计算xay的答案时进行剪枝.
以下几种情况需要剪枝(具体见代码):
1.当点i无法到达点j时.
2.当i=j时.
3.当点i和点j相连时.

代码实现

#include<iostream>
#include<queue>
#include<vector>
#include<string.h>
using namespace std;
struct node{
	int v,w;
	node(int v=0,int w=0):v(v),w(w){}
	friend bool operator<(const node &a,const node &b){
		return a.w>b.w;
	}
};
vector<node> ve[2010];
vector<int> ve2[5010];
int n,m,dis[2010][2010],dis2[2010][2010];
bool vis[2010];
void dij(int s,int e){
	priority_queue<node> q;
	dis[s][s]=0;
	q.push(node(s,dis[s][s]));
	while(!q.empty()){
		int u=q.top().v;
		q.pop();
		vis[u]=1;
		for(int i=0;i<ve[u].size();i++){
			int vv=ve[u][i].v,w=ve[u][i].w;
			if(vis[vv])continue;
			if(dis[s][vv]>dis[s][u]+w){
				dis[s][vv]=dis[s][u]+w;
				q.push(node(vv,dis[s][vv]));
			}
		}
	}
}

int main(){
	memset(dis,0x3f3f3f3f,sizeof(dis));
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		int u,v,w;
		scanf("%d%d%d",&u,&v,&w);
		ve[u].push_back(node(v,w));
	}
	for(int i=1;i<=n;i++){
		memset(vis,0,sizeof(vis));
		dij(i,n);
	}
	int ans=0;
	for(int i=1;i<=n;i++)
		for(int j=0;j<ve[i].size();j++){
			if(dis[i][ve[i][j].v]==ve[i][j].w){
				dis2[i][ve[i][j].v]=1;
				ve2[i].push_back(ve[i][j].v);
			}
		}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			if(i==j||dis[i][j]==0x3f3f3f3f||dis2[i][j]){
				ans++;
			}
			else{
				for(int k=0;k<ve2[i].size();k++){
					if(dis2[ve2[i][k]][j]&&dis[i][j]==dis[i][ve2[i][k]]+dis[ve2[i][k]][j]){
						ans++;
						ve2[i].push_back(j);
						dis2[i][j]=1;
						break;
					}
				}
			}
		}
	}        
	printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值