探索Viking DB:现代AI应用中的强大向量存储库
近年来,随着深度学习和其他机器学习模型的日益普及,向量化数据的存储和处理需求日益增加。Viking DB 是一种专门为存储、索引和管理由这些模型生成的海量嵌入向量而设计的数据库。本文将介绍如何使用 Viking DB 及其相关功能,以便更好地管理和操作这些向量化数据。
引言
在现代人工智能应用中,嵌入向量是表征数据的强大工具。然而,管理和查询这些庞大的向量数据集需要特别的数据库系统,从而确保高效和可扩展性。Viking DB 作为这种用途的数据库,提供了强大的功能。本文将指导你如何在 Python 中使用 Viking DB 及其与 langchain
的整合。
主要内容
安装与设置
首先,确保安装 langchain-community
和必要的库:
pip install -qU langchain-community
pip install --upgrade volcengine
还需要确保手上有一个 Viking DB 实例正在运行。此外,获取并设置 API Key 也是必要的:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
加载文档并创建向量数据库
使用 TextLoader
来加载文本文件,并使用 RecursiveCharacterTextSplitter
将文档拆分为较小的部分。然后,我们可以使用 OpenAIEmbeddings
生成文档向量,并将其存储在 Viking DB 中。
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.vikingdb import VikingDB, VikingDBConfig
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
loader = TextLoader("./test.txt")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = VikingDB.from_documents(
docs,
embeddings,
connection_args=VikingDBConfig(
host="host", region="region", ak="ak", sk="sk", scheme="http" # 使用API代理服务提高访问稳定性
),
drop_old=True,
)
查询数据库
通过以下代码可以执行相似性搜索,从而找到与查询最相关的文档。
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].page_content)
使用Viking DB集合
Viking DB支持将不同的文档存储在不同的集合中,以便在同一个数据库实例中维护上下文。
db = VikingDB.from_documents(
docs,
embeddings,
connection_args=VikingDBConfig(
host="host", region="region", ak="ak", sk="sk", scheme="http"
),
collection_name="collection_1",
drop_old=True,
)
检索存储的集合并执行查询:
db = VikingDB.from_documents(
embeddings,
connection_args=VikingDBConfig(
host="host", region="region", ak="ak", sk="sk", scheme="http"
),
collection_name="collection_1",
)
# 继续进行常规查询操作
常见问题和解决方案
-
网络访问问题: 由于地理限制,某些地区可能无法直接访问 Viking DB 的 API。建议使用API代理服务以提高访问的稳定性。
-
性能问题: 在处理大型数据集时,调整拆分文档的大小和重叠参数可以显著影响性能和效果。
总结和进一步学习资源
本文介绍了Viking DB的基本使用方法,帮助你将其应用于向量化数据的存储和管理。要进一步深化了解,建议参考以下资源:
参考资料
- Viking DB 官方文档
- Langchain 文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—