探索Viking DB:现代AI应用中的强大向量存储库

探索Viking DB:现代AI应用中的强大向量存储库

近年来,随着深度学习和其他机器学习模型的日益普及,向量化数据的存储和处理需求日益增加。Viking DB 是一种专门为存储、索引和管理由这些模型生成的海量嵌入向量而设计的数据库。本文将介绍如何使用 Viking DB 及其相关功能,以便更好地管理和操作这些向量化数据。

引言

在现代人工智能应用中,嵌入向量是表征数据的强大工具。然而,管理和查询这些庞大的向量数据集需要特别的数据库系统,从而确保高效和可扩展性。Viking DB 作为这种用途的数据库,提供了强大的功能。本文将指导你如何在 Python 中使用 Viking DB 及其与 langchain 的整合。

主要内容

安装与设置

首先,确保安装 langchain-community 和必要的库:

pip install -qU langchain-community
pip install --upgrade volcengine

还需要确保手上有一个 Viking DB 实例正在运行。此外,获取并设置 API Key 也是必要的:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

加载文档并创建向量数据库

使用 TextLoader 来加载文本文件,并使用 RecursiveCharacterTextSplitter 将文档拆分为较小的部分。然后,我们可以使用 OpenAIEmbeddings 生成文档向量,并将其存储在 Viking DB 中。

from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.vikingdb import VikingDB, VikingDBConfig
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

loader = TextLoader("./test.txt")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()

db = VikingDB.from_documents(
    docs,
    embeddings,
    connection_args=VikingDBConfig(
        host="host", region="region", ak="ak", sk="sk", scheme="http"  # 使用API代理服务提高访问稳定性
    ),
    drop_old=True,
)

查询数据库

通过以下代码可以执行相似性搜索,从而找到与查询最相关的文档。

query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)

print(docs[0].page_content)

使用Viking DB集合

Viking DB支持将不同的文档存储在不同的集合中,以便在同一个数据库实例中维护上下文。

db = VikingDB.from_documents(
    docs,
    embeddings,
    connection_args=VikingDBConfig(
        host="host", region="region", ak="ak", sk="sk", scheme="http"
    ),
    collection_name="collection_1",
    drop_old=True,
)

检索存储的集合并执行查询:

db = VikingDB.from_documents(
    embeddings,
    connection_args=VikingDBConfig(
        host="host", region="region", ak="ak", sk="sk", scheme="http"
    ),
    collection_name="collection_1",
)

# 继续进行常规查询操作

常见问题和解决方案

  • 网络访问问题: 由于地理限制,某些地区可能无法直接访问 Viking DB 的 API。建议使用API代理服务以提高访问的稳定性。

  • 性能问题: 在处理大型数据集时,调整拆分文档的大小和重叠参数可以显著影响性能和效果。

总结和进一步学习资源

本文介绍了Viking DB的基本使用方法,帮助你将其应用于向量化数据的存储和管理。要进一步深化了解,建议参考以下资源:

参考资料

  • Viking DB 官方文档
  • Langchain 文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值